Abstract
Autosomal recessive pseudohypoaldosteronism type I is a rare life-threatening disease characterized by severe neonatal salt wasting, hyperkalaemia, metabolic acidosis, and unresponsiveness to mineralocorticoid hormones. Investigation of affected offspring of consanguineous union reveals mutations in either the α or β subunits of the amiloride-sensitive epithelial sodium channel in five kindreds. These mutations are homozygous in affected subjects, co-segregate with the disease, and introduce frameshift, premature termination or missense mutations that result in loss of channel activity. These findings demonstrate the molecular basis and explain the pathophysiology of this disease
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
£139.00 per year
only £11.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Cheek, D. & Perry, J.W. A salt wasting syndrome in infancy. Arch. Dis. Childh. 33, 252–256 (1958).
Dillon, M.J. et al. Pseudohypoaldosteronism. Arch. Dis. Childh. 55, 427–434 (1980).
Popow, C., Pollak, A., Herkner, K., Scheibenreiter, S. & Swoboda, W. Familial pseudohypoaldosteronism. Acta Paediat. Scand. 77, 136–141 (1988).
Speiser, P.W., Stoner, E. & New, M.I. Pseudohypoaldosteronism: a review and report of two new cases. In Mechanisms and clinical aspects of steroid hormone resistance. (eds Chrousos, G.R, Loriaux, D.T. & Lipsett, M.B.) 173–195 (Plenum Press, New York, 1986).
Donnell, G.N., Litman, N. & Roldan, M., Am. J. Dis. Child. 97, 813–828 (1959).
Mathew, P.M., Manasra, K.B. & Hamdan, J.A. Indomethacin and cation-exchange resin in the management of pseudohypoaldosteronism. Clinical Pediat. 1, 58–60 (1993).
Hanukoglu, A. Type I pseudohypoaldosteronism includes two clinically and genetically distinct entities with either renal or multiple target organ defects. J.Clin. Endocrinn. Metab. 73, 936–944 (1991).
Hanukoglu, A., Bistritzer, T., Rakover, V. & Mandelberg, A. Pseudohypoaldosteronism with increased sweat and saliva electrolyte values and frequent lower respiratory tract infections mimicking cyctic fibrosis. J.Pediat. 125, 752–755 (1994).
Hogg, R.J., Marks, J.F., Marver, D. & Frolich, J.C. Long term observations in a patient with pseudohypoaldosteronism. Pediat. Nephrology. 5, 205–210 (1991).
Limal, J.M., Rapport, R., Dechaux, M., Riffaud, C. & Morin, C. Familial dominant pseudohypoaldosteronism. Lancet. 1, 51 (1978).
Hanukoglu, A., Fried, D. & Gotlieb, A. Inheritance of pseudohypoaldosteronism. Lancet. 1, 1359 (1978).
Rösier, A. The natural history of salt-wasting disorders of adrenal and renal origin. J. Clin. Endocrin. Metab. 59, 689–700 (1984).
Armanini, D. et al. Aldosterone-receptor deficiency in pseudohypoaldosteronism. New Engl. J. Med. 313, 1178–1181 (1985).
Kuhnle, U. et al. Pseudohypoaldosteronism in eight families: different forms of inheritance are evidence for various genetic defects. J. CIin. Endocrin. Metab. 70, 638–641 (1990).
Bosson, D. et al. Generalized unresponsiveness to mineralocorticoid hormones: familial recessive pseudohypoaldosteronism due to aldosterone-receptor deficiency. Acta Endocrin. 113, S376–S381 (1986).
Komesaroff, P.A., Verity, K. & Fuller, P.J. Pseudohypoaldosteronism: molecular characterization of the mineralocorticoid receptor. J. CIin. Endocrin. & Metab. 79, 27–31 (1994).
Zennaro, M.C., Borensztein, R., Jeunemaitre, X., Armanini, D. & Soubrier, F. No alteration in the primary structure of the mineralocorticoid receptor in a family with pseudohypoaldosteronism. J.CIin. Endocrin. Metab. 79, 32–38 (1994).
Horisberger, J.D., Canessa, C. & Rossier, B.C., Palmer, L.G. The epitheliall sodium channel-recent developments. Cell Physiol. Biochem. 32, 283–294 (1993).
Rossier, B.C. & Palmer, L.G. Mechanism of aldosterone action on sodium and potassiium transport. In The Kidney, physiology and pathophysiology, (eds Seldin, D.W. & Giebisch, G.) 1373–1409 (Raven Press, New York, 1992).
Canessa, C.M., Horisberger, J.D. & Rossier, B.D. Epithelial sodium channel related to proteins involved in neurodegeneration. Nature. 361, 467–470 (1993).
Canessa, C.M. et al. Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature. 367, 463–467 (1994).
Shimkets, R.A. et al. Liddle's Syndrome: heritable human hypertension caused by mutation in the B subunit of the epithelial sodium channel. Cell. 79, 407–414 (1994).
Hansson, J.H. et al. Hypertension caused by a truncated epithelial sodium channel subunit: genetic heterogeneity of Liddle's syndrome. Nature Genet. 11, 76–82 (1995).
Hansson, J.H. et al. Adenovo missense mutation of the B subunit of the epithelial sodium channel causes hypertension and Liddle's syndrome, identifying a proline-rich segment critical for regulation of channel activity. Proc. Natl. Acad. Sci. USA 92, 11495–11499 (1995).
Schild, L. et al. A mutation in the epithelial sodium channel causing Liddle's disease increases channel activity in the Xenopus laevis oocyte expression system. Proc. Natl. Acad. Sci. USA 92, 5699–5703 (1995).
Lander, E.S. & Botstein, D. Homozygosity mapping: A way to map human recessive traits with the DNA of inbred children. Science 236, 1567–1570 (1987).
Gyapay, G. et al. The 1993–94 Genethon human genetic linkage map. Nature Genet. 7, 246–339 (1994).
Li, X.J., Xu, R.H., Guggino, W.B. & Snyder, S.H. Alternatively spliced forms of the alpha subunit of the epithelial sodium channel: distinct sites for amiloride binding and channel pores. Mol. Pharmacol. 47, 1133–1140 (1995).
McDonald, F.J., Snyder, P.M., McCaray, P.B. Jr. & Welsh, M.J. Cloning, expression, and tissue distrubution of a human amiloride-sensitive Na+ channel. Am. J. Physiol. 268, L728–734 (1994).
McDonald, F.J., Price, M.P., Snyder, P.M. & Welsh, M.J. Cloning and expression of the β and γ subunits of the human epithelial sodium channel. Am. J. Physiol. 268, C1157–C1163 (1995).
Puoti, A. et al. The highly selective low-conductance epithelial Na channel of Xenopus laevis A6 kidney cells. Am J. Physiol 269, C188–C197 (1995).
Waldmann, R., Champigny, G., Bassilana, F., Voilley, N. & Lazdunski, M. Molecular cloning and functional expression of a novel amiloride-sensitive Na+ channel. J. Biol. Chem. 270, 27411–27414 (1995).
Huang, M. & Chalfie, M. Gene interactions affecting mechanosensory transduction in Caenomabditis elegans. Nature. 367, 467–470 (1994).
Chalfie, M. & Wolinsky, E. The identification and suppression of inherited neurodegeneration in Caenomabditis elegans. Nature. 345, 410–416 (1990).
Duc, C., Farman, N., Canessa, C.M., Bonvalet, J-P. & Rossier, B.C. Cell specific expression of epithelial sodium channel α, β and γ in aldosterone responsive epithelia from the rat: localization by in situ hybridization and immunocytochemistry. J. Cell. Biol. 127, 1907–1921 (1994).
Strang, L.B. Fetal lung liquid: secretion and reabsorption. Physiol. Rev. 71, 991–1016 (1991).
Hummler et al. Early death due to defective neonatal lung liquid clearance in alpha ENaC-deficient mice. Nature Genet. 12, 325–328 (1996).
Simon, D. et al. Gittleman's variant of Bartter's syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive NaCl cotransporter. Nature Genet. 12, 24–30 (1996).
Bell, G., Karam, J. & Rutter, W. Polymorphic DNA region adjacent to the 5′ end of the human insulin gene. Proc. Natl. Acad. Sci. USA 78, 5759–5763 (1981).
Canessa, C.M., Merillat, A.M. & Rossier, B.C. Membrane topology of the epithelial sodium channel in intact cells. Am. J. Ped. 267, C1682–169 (1994).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Chang, S., Grunder, S., Hanukoglu, A. et al. Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1. Nat Genet 12, 248–253 (1996). https://doi.org/10.1038/ng0396-248
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/ng0396-248
This article is cited by
-
The pathophysiology of distal renal tubular acidosis
Nature Reviews Nephrology (2023)
-
Inactivation of epithelial sodium ion channel molecules serves as effective diagnostic biomarkers in clear cell renal cell carcinoma
Genes & Genomics (2023)