[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A common sequence motif associated with recombination hot spots and genome instability in humans

Abstract

In humans, most meiotic crossover events are clustered into short regions of the genome known as recombination hot spots. We have previously identified DNA motifs that are enriched in hot spots, particularly the 7-mer CCTCCCT. Here we use the increased hot-spot resolution afforded by the Phase 2 HapMap and novel search methods to identify an extended family of motifs based around the degenerate 13-mer CCNCCNTNNCCNC, which is critical in recruiting crossover events to at least 40% of all human hot spots and which operates on diverse genetic backgrounds in both sexes. Furthermore, these motifs are found in hypervariable minisatellites and are clustered in the breakpoint regions of both disease-causing nonallelic homologous recombination hot spots and common mitochondrial deletion hot spots, implicating the motif as a driver of genome instability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A common hot-spot motif acts across different repeat families.
Figure 2: The role of flanking sequence and motif degeneracy in determining hot-spot activity.
Figure 3: Hot-spot sequence motifs at STS deletion hot spot and common mitochondrial deletion endpoints.
Figure 4: Recombination and hypermutable minisatellites.

Similar content being viewed by others

References

  1. Myers, S., Bottolo, L., Freeman, C., McVean, G. & Donnelly, P. A fine-scale map of recombination rates and hotspots across the human genome. Science 310, 321–324 (2005).

    Article  CAS  Google Scholar 

  2. Jeffreys, A.J. & Neumann, R. Reciprocal crossover asymmetry and meiotic drive in a human recombination hot spot. Nat. Genet. 31, 267–271 (2002).

    Article  CAS  Google Scholar 

  3. Jeffreys, A.J. & Neumann, R. Factors influencing recombination frequency and distribution in a human meiotic crossover hotspot. Hum. Mol. Genet. 14, 2277–2287 (2005).

    Article  CAS  Google Scholar 

  4. The International HapMap Consortium. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007).

  5. Baudat, F. & de Massy, B. Cis- and trans-acting elements regulate the mouse Psmb9 meiotic recombination hotspot. PLoS Genet. 3, e100 (2007).

    Article  Google Scholar 

  6. Neumann, R. & Jeffreys, A.J. Polymorphism in the activity of human crossover hotspots independent of local DNA sequence variation. Hum. Mol. Genet. 15, 1401–1411 (2006).

    Article  CAS  Google Scholar 

  7. Jeffreys, A.J., Kauppi, L. & Neumann, R. Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nat. Genet. 29, 217–222 (2001).

    Article  CAS  Google Scholar 

  8. Jeffreys, A.J., Murray, J. & Neumann, R. High-resolution mapping of crossovers in human sperm defines a minisatellite-associated recombination hotspot. Mol. Cell 2, 267–273 (1998).

    Article  CAS  Google Scholar 

  9. Bi, W. et al. Reciprocal crossovers and a positional preference for strand exchange in recombination events resulting in deletion or duplication of chromosome 17p11.2. Am. J. Hum. Genet. 73, 1302–1315 (2003).

    Article  CAS  Google Scholar 

  10. Reiter, L.T. et al. A recombination hotspot responsible for two inherited peripheral neuropathies is located near a mariner transposon-like element. Nat. Genet. 12, 288–297 (1996).

    Article  CAS  Google Scholar 

  11. Lopez-Correa, C. et al. Recombination hotspot in NF1 microdeletion patients. Hum. Mol. Genet. 10, 1387–1392 (2001).

    Article  CAS  Google Scholar 

  12. Van Esch, H. et al. Deletion of VCX-A due to NAHR plays a major role in the occurrence of mental retardation in patients with X-linked ichthyosis. Hum. Mol. Genet. 14, 1795–1803 (2005).

    Article  CAS  Google Scholar 

  13. Raedt, T.D. et al. Conservation of hotspots for recombination in low-copy repeats associated with the NF1 microdeletion. Nat. Genet. 38, 1419–1423 (2006).

    Article  Google Scholar 

  14. Lindsay, S.J., Khajavi, M., Lupski, J.R. & Hurles, M.E. A chromosomal rearrangement hotspot can be identified from population genetic variation and is coincident with a hotspot for allelic recombination. Am. J. Hum. Genet. 79, 890–902 (2006).

    Article  CAS  Google Scholar 

  15. Andreassen, R. & Olaisen, B. De novo mutations and allelic diversity at minisatellite locus D7S22 investigated by allele-specific four-state MVR-PCR analysis. Hum. Mol. Genet. 7, 2113–2120 (1998).

    Article  CAS  Google Scholar 

  16. Berg, I., Neumann, R., Cederberg, H., Rannug, U. & Jeffreys, A.J. Two modes of germline instability at human minisatellite MS1 (locus D1S7): complex rearrangements and paradoxical hyperdeletion. Am. J. Hum. Genet. 72, 1436–1447 (2003).

    Article  CAS  Google Scholar 

  17. Buard, J., Bourdet, A., Yardley, J., Dubrova, Y. & Jeffreys, A.J. Influences of array size and homogeneity on minisatellite mutation. EMBO J. 17, 3495–3502 (1998).

    Article  CAS  Google Scholar 

  18. Buard, J., Shone, A.C. & Jeffreys, A.J. Meiotic recombination and flanking marker exchange at the highly unstable human minisatellite CEB1 (D2S90). Am. J. Hum. Genet. 67, 333–344 (2000).

    Article  CAS  Google Scholar 

  19. Jeffreys, A.J., Neil, D.L. & Neumann, R. Repeat instability at human minisatellites arising from meiotic recombination. EMBO J. 17, 4147–4157 (1998).

    Article  CAS  Google Scholar 

  20. May, C.A., Jeffreys, A.J. & Armour, J.A. Mutation rate heterogeneity and the generation of allele diversity at the human minisatellite MS205 (D16S309). Hum. Mol. Genet. 5, 1823–1833 (1996).

    Article  CAS  Google Scholar 

  21. Tamaki, K., May, C.A., Dubrova, Y.E. & Jeffreys, A.J. Extremely complex repeat shuffling during germline mutation at human minisatellite B6.7. Hum. Mol. Genet. 8, 879–888 (1999).

    Article  CAS  Google Scholar 

  22. Stead, J.D. & Jeffreys, A.J. Allele diversity and germline mutation at the insulin minisatellite. Hum. Mol. Genet. 9, 713–723 (2000).

    Article  CAS  Google Scholar 

  23. Lopes, J., Ribeyre, C. & Nicolas, A. Complex minisatellite rearrangements generated in the total or partial absence of Rad27/hFEN1 activity occur in a single generation and are Rad51 and Rad52 dependent. Mol. Cell. Biol. 26, 6675–6689 (2006).

    Article  CAS  Google Scholar 

  24. Linnane, A.W. et al. Mitochondrial gene mutation: the ageing process and degenerative diseases. Biochem. Int. 22, 1067–1076 (1990).

    CAS  PubMed  Google Scholar 

  25. Srivastava, S. & Moraes, C.T. Double-strand breaks of mouse muscle mtDNA promote large deletions similar to multiple mtDNA deletions in humans. Hum. Mol. Genet. 14, 893–902 (2005).

    Article  CAS  Google Scholar 

  26. Coop, G., Wen, X., Ober, C., Pritchard, J.K. & Przeworski, M. High-resolution mapping of crossovers reveals extensive variation in fine-scale recombination patterns among humans. Science 319, 1395–1398 (2008).

    Article  CAS  Google Scholar 

  27. Baumann, P., Benson, F.E. & West, S.C. Human Rad51 protein promotes ATP-dependent homologous pairing and strand transfer reactions in vitro. Cell 87, 757–766 (1996).

    Article  CAS  Google Scholar 

  28. Vergnaud, G. & Denoeud, F. Minisatellites: mutability and genome architecture. Genome Res. 10, 899–907 (2000).

    Article  CAS  Google Scholar 

  29. Bayes, M., Magano, L.F., Rivera, N., Flores, R. & Perez Jurado, L.A. Mutational mechanisms of Williams-Beuren syndrome deletions. Am. J. Hum. Genet. 73, 131–151 (2003).

    Article  CAS  Google Scholar 

  30. Visser, R. et al. Identification of a 3.0-kb major recombination hotspot in patients with Sotos syndrome who carry a common 1.9-Mb microdeletion. Am. J. Hum. Genet. 76, 52–67 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Lupski for help with compiling information on NAHR hot spots and G. Coop for discussion. We thank the Engineering and Physical Sciences Research Council (EPSRC), the Wolfson Foundation, the EU and the Wellcome Trust for financial support.

Author information

Authors and Affiliations

Authors

Contributions

S.M., P.D. and G.M. designed the study; S.M., A.A. and C.F. performed the analyses; S.M. and G.M. wrote the paper.

Corresponding author

Correspondence to Simon Myers.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2, Supplementary Tables 1–4, Supplementary Methods and Supplementary Note (PDF 318 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myers, S., Freeman, C., Auton, A. et al. A common sequence motif associated with recombination hot spots and genome instability in humans. Nat Genet 40, 1124–1129 (2008). https://doi.org/10.1038/ng.213

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.213

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing