[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Future increases in extreme precipitation exceed observed scaling rates

Abstract

Models and physical reasoning predict that extreme precipitation will increase in a warmer climate due to increased atmospheric humidity1,2,3. Observational tests using regression analysis have reported a puzzling variety of apparent scaling rates including strong rates in midlatitude locations but weak or negative rates in the tropics4,5. Here we analyse daily extreme precipitation events in several Australian cities to show that temporary local cooling associated with extreme events and associated synoptic conditions reduces these apparent scaling rates, especially in warmer climatic conditions. A regional climate projection ensemble6 for Australia, which implicitly includes these effects, accurately and robustly reproduces the observed apparent scaling throughout the continent for daily precipitation extremes. Projections from the same model show future daily extremes increasing at rates faster than those inferred from observed scaling. The strongest extremes (99.9th percentile events) scale significantly faster than near-surface water vapour, between 5.7–15% °C−1 depending on model details. This scaling rate is highly correlated with the change in water vapour, implying a trade-off between a more arid future climate or one with strong increases in extreme precipitation. These conclusions are likely to generalize to other regions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spatial distributions of apparent scaling of extreme precipitation with temperature.
Figure 2: Evolution of composite extreme events.
Figure 3: Apparent versus climate scaling in simulations.
Figure 4: Extreme precipitation versus water vapour in simulations.

Similar content being viewed by others

References

  1. Trenberth, K. E., Dai, A., Rasmussen, R. M. & Parsons, D. B. The changing character of precipitation. Bull. Am. Meteorol. Soc. 84, 1205–1217 (2003).

    Article  Google Scholar 

  2. O’Gorman, P. A. & Schneider, T. The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl Acad. Sci. USA 106, 14773–14777 (2009).

    Article  Google Scholar 

  3. Ban, N., Schmidli, J. & Schär, C. Heavy precipitation in a changing climate: Does short-term summer precipitation increase faster? Geophys. Res. Lett. 42, 1165–1172 (2015).

    Article  Google Scholar 

  4. Hardwick Jones, R., Westra, S. & Sharma, A. Observed relationships between extreme sub-daily precipitation, surface temperature, and relative humidity. Geophys. Res. Lett. 37, L22805 (2010).

    Article  Google Scholar 

  5. Utsumi, N., Seto, S., Kanae, S., Maeda, E. E. & Oki, T. Does higher surface temperature intensify extreme precipitation? Geophy. Res. Lett. 38, L16708 (2011).

    Article  Google Scholar 

  6. Evans, J. P. et al. Design of a regional climate modelling projection ensemble experiment–NARCliM. Geosci. Model Dev. 7, 621–629 (2014).

    Article  Google Scholar 

  7. O’Gorman, P. A. Precipitation extremes under climate change. Curr. Clim. Change Rep. 1, 49–59 (2015).

    Article  Google Scholar 

  8. Kharin, V. V., Zwiers, F. W., Zhang, X. & Wehner, M. Changes in temperature and precipitation extremes in the CMIP5 ensemble. Climatic Change 119, 345–357 (2013).

    Article  Google Scholar 

  9. Muller, C. J., O’Gorman, P. A. & Back, L. E. Intensification of precipitation extremes with warming in a cloud-resolving model. J. Clim. 24, 2784–2800 (2011).

    Article  Google Scholar 

  10. Kendon, E. J. et al. Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat. Clim. Change 4, 570–576 (2014).

    Article  Google Scholar 

  11. Chan, S. C., Kendon, E. J., Roberts, N. M., Fowler, H. J. & Blenkinsop, S. Downturn in scaling of UK extreme rainfall with temperature for future hottest days. Nat. Geosci. 9, 24–28 (2016).

    Article  CAS  Google Scholar 

  12. Allan, R. P. & Soden, B. J. Atmospheric warming and the amplification of precipitation extremes. Science 321, 1481–1484 (2008).

    Article  CAS  Google Scholar 

  13. Singh, M. S. & O’Gorman, P. A. Influence of microphysics on the scaling of precipitation extremes with temperature. Geophys. Res. Lett. 41, 6037–6044 (2014).

    Article  Google Scholar 

  14. Lenderink, G. & Van Meijgaard, E. Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci. 1, 511–514 (2008).

    Article  CAS  Google Scholar 

  15. Ban, N., Schmidli, J. & Schär, C. Evaluation of the convection-resolving regional climate modeling approach in decade-simulations. J. Geophys. Res. Atmos. 119, 7889–7907 (2014).

    Article  Google Scholar 

  16. Berg, P., Moseley, C. & Haerter, J. O. Strong increase in convective precipitation in response to higher temperatures. Nat. Geosci. 6, 181–185 (2013).

    Article  CAS  Google Scholar 

  17. Drobinski, P. et al. Scaling precipitation extremes with temperature in the Mediterranean: past climate assessment and projection in anthropogenic scenarios. Clim. Dynam. https://dx.doi.org/10.1007/s00382-016-3083-x (2016).

  18. Blenkinsop, S., Chan, S. C., Kendon, E. J., Roberts, N. M. & Fowler, H. J. Temperature influences on intense UK hourly precipitation and dependency on large-scale circulation. Environ. Res. Lett. 10, 054021 (2015).

    Article  Google Scholar 

  19. Shaw, S. B., Royem, A. A. & Riha, S. J. The relationship between extreme hourly precipitation and surface temperature in different hydroclimatic regions of the United States. J. Hydrometeorol. 12, 319–325 (2011).

    Article  Google Scholar 

  20. Miao, C., Sun, Q., Borthwick, A. G. & Duan, Q. Linkage between hourly precipitation events and atmospheric temperature changes over China during the warm season. Sci. Rep. 6, 22543 (2016).

    Article  CAS  Google Scholar 

  21. Berg, P. et al. Seasonal characteristics of the relationship between daily precipitation intensity and surface temperature. J. Geophys. Res. 114, D18102 (2009).

    Article  Google Scholar 

  22. Lepore, C., Veneziano, D. & Molini, A. Temperature and CAPE dependence of rainfall extremes in the eastern United States. Geophys. Res. Lett. 42, 74–83 (2015).

    Article  Google Scholar 

  23. Berg, P. & Haerter, J. O. Unexpected increase in precipitation intensity with temperature—A result of mixing of precipitation types? Atmos. Res. 119, 56–61 (2013).

    Article  Google Scholar 

  24. Westra, S. et al. Future changes to the intensity and frequency of short-duration extreme rainfall. Rev. Geophys. 52, 522–555 (2014).

    Article  Google Scholar 

  25. Westra, S., Alexander, L. V. & Zwiers, F. W. Global increasing trends in annual maximum daily precipitation. J. Clim. 26, 3904–3918 (2013).

    Article  Google Scholar 

  26. O’Gorman, P. A. Sensitivity of tropical precipitation extremes to climate change. Nat. Geosci. 5, 697–700 (2012).

    Article  Google Scholar 

  27. Dettinger, M. Climate change, atmospheric rivers, and floods in California–a multimodel analysis of storm frequency and magnitude changes. J. Am. Water Resour. Assoc. 47, 514–523 (2011).

    Article  Google Scholar 

  28. Jones, D. A., Wang, W. & Fawcett, R. High-quality spatial climate data-sets for Australia. Aust. Meteorol. Oceanogr. J. 58, 233–248 (2009).

    Article  Google Scholar 

  29. Kullgren, K. & Kim, K. Y. Physical mechanisms of the Australian summer monsoon: 1. Seasonal cycle. J. Geophys. Res. 111, D204104 (2006).

    Article  Google Scholar 

  30. Sherwood, S. C. & Wahrlich, R. Observed evolution of tropical deep convective events and their environment. Mon. Weath. Rev. 127, 1777–1795 (1999).

    Article  Google Scholar 

  31. Waliser, D. E. & Graham, N. E. Convective cloud systems and warm-pool sea surface temperatures: coupled interactions and self-regulation. J. Geophys. Res. 98, 12881–12893 (1993).

    Article  Google Scholar 

  32. Lenderink, G., Mok, H. Y., Lee, T. C. & Van Oldenborgh, G. J. Scaling and trends of hourly precipitation extremes in two different climate zones–Hong Kong and the Netherlands. Hydrol. Earth Syst. Sci. 15, 3033–3041 (2011).

    Article  Google Scholar 

  33. Pepler, A., Coutts-Smith, A. & Timbal, B. The role of East Coast Lows on rainfall patterns and inter-annual variability across the East Coast of Australia. Int. J. Climatol. 34, 1011–1021 (2014).

    Article  Google Scholar 

  34. Cortés-Hernández, V. E. et al. Evaluating regional climate models for simulating sub-daily rainfall extremes. Clim. Dynam. 47, 1613–1628 (2016).

    Article  Google Scholar 

  35. O’Gorman, P. A. & Schneider, T. The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl Acad. Sci. USA 106, 14773–14777 (2009).

    Article  Google Scholar 

  36. Kunkel, K. E. et al. Probable maximum precipitation and climate change. Geophys. Res. Lett. 40, 1402–1408 (2013).

    Article  Google Scholar 

  37. Sherwood, S. & Fu, Q. A drier future? Science 343, 737–739 (2014).

    Article  CAS  Google Scholar 

  38. Dunn, R. J. et al. HadISD: a quality-controlled global synoptic report database for selected variables at long-term stations from 1973–2011. Clim. Past. 8, 1649–1679 (2012).

    Article  Google Scholar 

  39. IPCC, Special Report on Emissions Scenarios (eds Nakićenović, N. & Swart, R.) (Cambridge Univ. Press, 2000).

  40. Skamarock, W. C. et al. A Description of the Advanced Research WRF Version 3 NCAR Technical Note (NCAR, 2008).

    Google Scholar 

  41. Evans, J., Ekström, M. & Ji, F. Evaluating the performance of a WRF physics ensemble over South-East Australia. Clim. Dynam. 39, 1241–1258 (2012).

    Article  Google Scholar 

  42. Ji, F., Ekström, M., Evans, J. P. & Teng, J. Evaluating rainfall patterns using physics scheme ensembles from a regional atmospheric model. Theor. Appl. Climatol. 115, 297–304 (2014).

    Article  Google Scholar 

  43. Evans, J. P., Ji, F., Abramowitz, G. & Ekström, M. Optimally choosing small ensemble members to produce robust climate simulations. Environ. Res. Lett. 8, 044050 (2013).

    Article  Google Scholar 

  44. Schär, C. et al. Percentile indices for assessing changes in heavy precipitation events. Climatic Change 137, 201–216 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Bureau of Meteorology, the Bureau of Rural Sciences, and CSIRO for providing AWAP data and Met Office Hadley Center for providing HadISD data. Model data used here came from the NSW Office of Environment and Heritage-backed NSW/ACT Regional Climate Modelling Project (NARCliM). This work was funded by ARC grants FL150100035, LE150100089, FT110100576 and DP160103439.

Author information

Authors and Affiliations

Authors

Contributions

J.B. conducted all analyses and led the writing of the manuscript. S.C.S. assisted in study design and interpretation, L.V.A. assisted in choice and interpretation of observational data, and J.P.E. performed the NARCliM simulations. All authors assisted in writing the manuscript.

Corresponding authors

Correspondence to Jiawei Bao or Steven C. Sherwood.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3109 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, J., Sherwood, S., Alexander, L. et al. Future increases in extreme precipitation exceed observed scaling rates. Nature Clim Change 7, 128–132 (2017). https://doi.org/10.1038/nclimate3201

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate3201

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing