[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gain of function of mutant p53 by coaggregation with multiple tumor suppressors

Abstract

Many p53 missense mutations possess dominant-negative activity and oncogenic gain of function. We report that for structurally destabilized p53 mutants, these effects result from mutant-induced coaggregation of wild-type p53 and its paralogs p63 and p73, thereby also inducing a heat-shock response. Aggregation of mutant p53 resulted from self-assembly of a conserved aggregation-nucleating sequence within the hydrophobic core of the DNA-binding domain, which becomes exposed after mutation. Suppressing the aggregation propensity of this sequence by mutagenesis abrogated gain of function and restored activity of wild-type p53 and its paralogs. In the p53 germline mutation database, tumors carrying aggregation-prone p53 mutations have a significantly lower frequency of wild-type allele loss as compared to tumors harboring nonaggregating mutations, suggesting a difference in clonal selection of aggregating mutants. Overall, our study reveals a novel disease mechanism for mutant p53 gain of function and suggests that, at least in some respects, cancer could be considered an aggregation-associated disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of p53 protein and the effects of mutations on protein cellular localization.
Figure 2: Immunostain of p53 aggregates in tumor cell lines and tissues.
Figure 3: Mutant p53 induced coaggregation of wild-type p53 and caused dominant-negative activity.
Figure 4: Sequestration of p63 and p73 by mutant p53 aggregates.
Figure 5: Mutant p53 interacted and interfered with p73 through coaggregation.
Figure 6: Aggregation of mutant p53 is linked to lower rate of loss of heterogeneity and patient survival.
Figure 7: Schematic graph showing the proposed model for coaggregation of p53, p63 and p73.

Similar content being viewed by others

References

  1. Aguzzi, A. & O'Connor, T. Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat. Rev. Drug Discov. 9, 237–248 (2010).

    Article  CAS  Google Scholar 

  2. Huo, Q. Protein complexes/aggregates as potential cancer biomarkers revealed by a nanoparticle aggregation immunoassay. Colloids Surf. B Biointerfaces 78, 259–265 (2010).

    Article  CAS  Google Scholar 

  3. Maslon, M.M. & Hupp, T.R. Drug discovery and mutant p53. Trends Cell Biol. 20, 542–555 (2010).

    Article  CAS  Google Scholar 

  4. Olivier, M. et al. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum. Mutat. 19, 607–614 (2002).

    Article  CAS  Google Scholar 

  5. Ang, H.C., Joerger, A.C., Mayer, S. & Fersht, A.R. Effects of common cancer mutations on stability and DNA binding of full-length p53 compared with isolated core domains. J. Biol. Chem. 281, 21934–21941 (2006).

    Article  CAS  Google Scholar 

  6. Gannon, J.V., Greaves, R., Iggo, R. & Lane, D.P. Activating mutations in p53 produce a common conformational effect. A monoclonal antibody specific for the mutant form. EMBO J. 9, 1595–1602 (1990).

    Article  CAS  Google Scholar 

  7. Joerger, A.C. & Fersht, A.R. Structural biology of the tumor suppressor p53. Annu. Rev. Biochem. 77, 557–582 (2008).

    Article  CAS  Google Scholar 

  8. Chan, W.M., Siu, W.Y., Lau, A. & Poon, R.Y. How many mutant p53 molecules are needed to inactivate a tetramer? Mol. Cell. Biol. 24, 3536–3551 (2004).

    Article  CAS  Google Scholar 

  9. Brosh, R. & Rotter, V. When mutants gain new powers: news from the mutant p53 field. Nat. Rev. Cancer 9, 701–713 (2009).

    Article  CAS  Google Scholar 

  10. Su, X. et al. TAp63 suppresses metastasis through coordinate regulation of Dicer and miRNAs. Nature 467, 986–990 (2010).

    Article  CAS  Google Scholar 

  11. Leong, C.O., Vidnovic, N., DeYoung, M.P., Sgroi, D. & Ellisen, L.W. The p63/p73 network mediates chemosensitivity to cisplatin in a biologically defined subset of primary breast cancers. J. Clin. Invest. 117, 1370–1380 (2007).

    Article  CAS  Google Scholar 

  12. Gaiddon, C., Lokshin, M., Ahn, J., Zhang, T. & Prives, C. A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol. Cell. Biol. 21, 1874–1887 (2001).

    Article  CAS  Google Scholar 

  13. Lang, G.A. et al. Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 119, 861–872 (2004).

    Article  CAS  Google Scholar 

  14. Ostermeyer, A.G., Runko, E., Winkfield, B., Ahn, B. & Moll, U.M. Cytoplasmically sequestered wild-type p53 protein in neuroblastoma is relocated to the nucleus by a C-terminal peptide. Proc. Natl. Acad. Sci. USA 93, 15190–15194 (1996).

    Article  CAS  Google Scholar 

  15. Johnston, J.A., Ward, C.L. & Kopito, R.R. Aggresomes: a cellular response to misfolded proteins. J. Cell Biol. 143, 1883–1898 (1998).

    Article  CAS  Google Scholar 

  16. Okorokov, A.L. & Orlova, E.V. Structural biology of the p53 tumour suppressor. Curr. Opin. Struct. Biol. 19, 197–202 (2009).

    Article  CAS  Google Scholar 

  17. Fernandez-Escamilla, A.M., Rousseau, F., Schymkowitz, J. & Serrano, L. Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat. Biotechnol. 22, 1302–1306 (2004).

    Article  CAS  Google Scholar 

  18. Bullock, A.N. & Fersht, A.R. Rescuing the function of mutant p53. Nat. Rev. Cancer 1, 68–76 (2001).

    Article  CAS  Google Scholar 

  19. Ishimaru, D. et al. Fibrillar aggregates of the tumor suppressor p53 core domain. Biochemistry 42, 9022–9027 (2003).

    Article  CAS  Google Scholar 

  20. Kruse, J.P. & Gu, W. MSL2 promotes Mdm2-independent cytoplasmic localization of p53. J. Biol. Chem. 284, 3250–3263 (2009).

    Article  CAS  Google Scholar 

  21. Liang, S.H. & Clarke, M.F. A bipartite nuclear localization signal is required for p53 nuclear import regulated by a carboxyl-terminal domain. J. Biol. Chem. 274, 32699–32703 (1999).

    Article  CAS  Google Scholar 

  22. Haupt, S., Berger, M., Goldberg, Z. & Haupt, Y. Apoptosis—the p53 network. J. Cell Sci. 116, 4077–4085 (2003).

    Article  CAS  Google Scholar 

  23. Davison, T.S., Yin, P., Nie, E., Kay, C. & Arrowsmith, C.H. Characterization of the oligomerization defects of two p53 mutants found in families with Li-Fraumeni and Li-Fraumeni-like syndrome. Oncogene 17, 651–656 (1998).

    Article  CAS  Google Scholar 

  24. Strano, S. et al. Physical and functional interaction between p53 mutants and different isoforms of p73. J. Biol. Chem. 275, 29503–29512 (2000).

    Article  CAS  Google Scholar 

  25. Li, Y. & Prives, C. Are interactions with p63 and p73 involved in mutant p53 gain of oncogenic function? Oncogene 26, 2220–2225 (2007).

    Article  CAS  Google Scholar 

  26. Joerger, A.C. et al. Structural evolution of p53, p63, and p73: implication for heterotetramer formation. Proc. Natl. Acad. Sci. USA 106, 17705–17710 (2009).

    Article  CAS  Google Scholar 

  27. Rajan, R.S., Illing, M.E., Bence, N.F. & Kopito, R.R. Specificity in intracellular protein aggregation and inclusion body formation. Proc. Natl. Acad. Sci. USA 98, 13060–13065 (2001).

    Article  CAS  Google Scholar 

  28. Cam, H. et al. p53 family members in myogenic differentiation and rhabdomyosarcoma development. Cancer Cell 10, 281–293 (2006).

    Article  CAS  Google Scholar 

  29. Boominathan, L. Some facts and thoughts: p73 as a tumor suppressor gene in the network of tumor suppressors. Mol. Cancer 6, 27 (2007).

    Article  Google Scholar 

  30. Hishiya, A. & Takayama, S. Molecular chaperones as regulators of cell death. Oncogene 27, 6489–6506 (2008).

    Article  CAS  Google Scholar 

  31. Whitesell, L. & Lindquist, S.L. HSP90 and the chaperoning of cancer. Nat. Rev. Cancer 5, 761–772 (2005).

    Article  CAS  Google Scholar 

  32. Ciocca, D.R. & Calderwood, S.K. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10, 86–103 (2005).

    Article  CAS  Google Scholar 

  33. Sedlacek, Z., Kodet, R., Poustka, A. & Goetz, P. A database of germline p53 mutations in cancer-prone families. Nucleic Acids Res. 26, 214–215 (1998).

    Article  CAS  Google Scholar 

  34. Powell, B., Soong, R., Iacopetta, B., Seshadri, R. & Smith, D.R. Prognostic significance of mutations to different structural and functional regions of the p53 gene in breast cancer. Clin. Cancer Res. 6, 443–451 (2000).

    CAS  PubMed  Google Scholar 

  35. Samowitz, W.S. et al. Prognostic significance of p53 mutations in colon cancer at the population level. Int. J. Cancer 99, 597–602 (2002).

    Article  CAS  Google Scholar 

  36. Davison, T.S. et al. p73 and p63 are homotetramers capable of weak heterotypic interactions with each other but not with p53. J. Biol. Chem. 274, 18709–18714 (1999).

    Article  CAS  Google Scholar 

  37. Finlay, C.A. et al. Activating mutations for transformation by p53 produce a gene product that forms an hsc70-p53 complex with an altered half-life. Mol. Cell. Biol. 8, 531–539 (1988).

    Article  CAS  Google Scholar 

  38. Milner, J. & Medcalf, E.A. Cotranslation of activated mutant p53 with wild type drives the wild-type p53 protein into the mutant conformation. Cell 65, 765–774 (1991).

    Article  CAS  Google Scholar 

  39. Friedman, P.N., Chen, X., Bargonetti, J. & Prives, C. The p53 protein is an unusually shaped tetramer that binds directly to DNA. Proc. Natl. Acad. Sci. USA 90, 3319–3323 (1993).

    Article  CAS  Google Scholar 

  40. Goh, A.M., Coffill, C.R. & Lane, D.P. The role of mutant p53 in human cancer. J. Pathol. 223, 116–126 (2011).

    Article  CAS  Google Scholar 

  41. Flores, E.R. et al. Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cancer Cell 7, 363–373 (2005).

    Article  CAS  Google Scholar 

  42. Bensaad, K. et al. Change of conformation of the DNA-binding domain of p53 is the only key element for binding of and interference with p73. J. Biol. Chem. 278, 10546–10555 (2003).

    Article  CAS  Google Scholar 

  43. Bullock, A.N. et al. Thermodynamic stability of wild-type and mutant p53 core domain. Proc. Natl. Acad. Sci. USA 94, 14338–14342 (1997).

    Article  CAS  Google Scholar 

  44. Rotter, V. p53, a transformation-related cellular-encoded protein, can be used as a biochemical marker for the detection of primary mouse tumor cells. Proc. Natl. Acad. Sci. USA 80, 2613–2617 (1983).

    Article  CAS  Google Scholar 

  45. Moll, U.M., Riou, G. & Levine, A.J. Two distinct mechanisms alter p53 in breast cancer: mutation and nuclear exclusion. Proc. Natl. Acad. Sci. USA 89, 7262–7266 (1992).

    Article  CAS  Google Scholar 

  46. Ostermeyer, A.G., Runko, E., Winkfield, B., Ahn, B. & Moll, U.M. Cytoplasmically sequestered wild-type p53 protein in neuroblastoma is relocated to the nucleus by a C-terminal peptide. Proc. Natl. Acad. Sci. USA 93, 15190–15194 (1996).

    Article  CAS  Google Scholar 

  47. Fernandez-Escamilla, A.M., Rousseau, F., Schymkowitz, J. & Serrano, L. Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat. Biotechnol. 22, 1302–1306 (2004).

    Article  CAS  Google Scholar 

  48. Bullock, A.N., Henckel, J. & Fersht, A.R. Quantitative analysis of residual folding and DNA binding in mutant p53 core domain: definition of mutant states for rescue in cancer therapy. Oncogene 19, 1245–1256 (2000).

    Article  CAS  Google Scholar 

  49. Schymkowitz, J. et al. The FoldX web server: an online force field. Nucleic Acids Res. 33, W382–W388 (2005).

    Article  CAS  Google Scholar 

  50. Di Como, C.J., Gaiddon, C. & Prives, C. p73 function is inhibited by tumor-derived p53 mutants in mammalian cells. Mol. Cell. Biol. 19, 1438–1449 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The VIB Switch Laboratory was supported by the Research Foundation Flanders and the Agency for Innovation by Science and Technology Flanders. J.X. and A.Z. were supported by Linking Sino-European Universities through Mobility and National Natural Science Foundation of China (81000861) and the Research Foundation Flanders, respectively. D.L. was supported by the Research Council Katholieke Universiteit Leuven, Center of Excellence (KUL PFV/10/016 SymBioSys) and the Stichting Tegen Kanker. We thank G. Peuteman, D. Smeets and T. Van Brussel for technical assistance. We thank G. Lozano for access to tumor tissues from transgenic mice and G. Melino for plasmids.

Author information

Authors and Affiliations

Authors

Contributions

J.X. performed BN-PAGE, immunofluorescence, immunoprecipitation, qPCR and analyzed clinical data; J. Reumers analyzed stability of p53 mutants by FoldX; J.R.C. studied peptide aggregation and analyzed tumor tissues with J.X.; R.G. purified p53 and performed electron microscopy and FTIR; J. Rozenski performed ESI-MS study; A.C. provided clinical tissue samples; F.D.S., S.R., A.Z. and J.-C.M. did cellular experiments; D.L. sequenced TP53 in tumors; Y.-A.S. prepared tissue sections from mice; J.X., F.R., J.S. and F.D.S. wrote the manuscript; F.R. and J.S. formulated the project.

Corresponding authors

Correspondence to Frederic Rousseau or Joost Schymkowitz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Supplementary Figures 1–18 and Supplementary Table 1 (PDF 8472 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Reumers, J., Couceiro, J. et al. Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nat Chem Biol 7, 285–295 (2011). https://doi.org/10.1038/nchembio.546

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.546

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing