[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Expression profiling using a hexamer-based universal microarray

Abstract

We describe a transcriptional analysis platform consisting of a universal micro-array system (UMAS) combined with an enzymatic manipulation step that is capable of generating expression profiles from any organism without requiring a priori species-specific knowledge of transcript sequences. The transcriptome is converted to cDNA and processed with restriction endonucleases to generate low-complexity pools (80–120) of equal length DNA fragments. The resulting material is amplified and detected with the UMAS system, comprising all possible 4,096 (46) DNA hexamers. Ligation to the arrays yields thousands of 14-mer sequence tags. The compendium of signals from all pools in the array-of-universal arrays comprises a full-transcriptome expression profile. The technology was validated by analysis of the galactose response of Saccharomyces cerevisiae, and the resulting profiles showed excellent agreement with the literature and real-time PCR assays. The technology was also used to demonstrate expression profiling from a hybrid organism in a proof-of-concept experiment where a T-cell receptor gene was expressed in yeast.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the GenCompass process and the resulting targets.
Figure 2: Gene coverage and multiple tags per gene with UMAS technology.
Figure 3: Bp composition of ligation signatures and reproducibility across concentrations.
Figure 4: Determination of detection limit and system reproducibility.
Figure 5: Expression profiling of yeast in response to galactose induction.
Figure 6: Detection of a mouse transgene in a yeast background.

Similar content being viewed by others

References

  1. Janssen, P. et al. Beyond 100 Genomes. Genome Biol. 4, 402 (2003).

    PubMed  PubMed Central  Google Scholar 

  2. Liang, P. & Pardee, A. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257, 967–971 (1992).

    CAS  PubMed  Google Scholar 

  3. Saha, S. et al. Using the transcriptome to annotate the genome. Nat. Biotechnol. 19, 508–512 (2002).

    Google Scholar 

  4. Velculescu, V.E., Zhang, L., Vogelstein, B. & Kinzler, K.W. Serial analysis of gene expression. Science 270, 484–487 (1995).

    CAS  PubMed  Google Scholar 

  5. Brenner, S. et al. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat. Biotechnol. 18, 630–634 (2000).

    CAS  PubMed  Google Scholar 

  6. Brenner, S. et al. In vitro cloning of complex mixtures of DNA on microbeads: physical separation of differentially expressed cDNAs. Proc. Natl. Acad. Sci. USA 97, 1665–1670 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sutcliffe, J.G. et al. TOGA: An automated parsing technology for analyzing expression on nearly all genes. Proc. Natl. Acad. Sci. USA 97, 1976–1981 (2002).

    Google Scholar 

  8. Shimkets, R.A. et al. Gene expression analysis by transcript profiling coupled to a gene database query. Nat. Biotechnol. 17, 798–803 (1999).

    CAS  PubMed  Google Scholar 

  9. Schena, M., Shalon, D., Davis, R.W. & Brown, P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995).

    CAS  PubMed  Google Scholar 

  10. Lockhart, D.J. et al. Expression monitoring by hybridization to high-density oligonucleotides arrays. Nat. Biotechnol. 14, 1675–1680 (1996).

    CAS  PubMed  Google Scholar 

  11. Ramakrishnan, R. et al. An assessment of Motorola codelink microarray performance for expression profiling applications. Nucleic Acids Res. 30, e30, (2002).

    PubMed  PubMed Central  Google Scholar 

  12. Hughes, T.R. et al. Expression profiling using microarrays fabricated by an ink-jet oligonucleotides synthesizer. Nat. Biotechnol. 19, 342–347 (2001).

    CAS  PubMed  Google Scholar 

  13. Hughes, T.R. et al. Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000).

    CAS  PubMed  Google Scholar 

  14. van Dam, R.M. & Quake, S.R. Gene expression analysis with universal n-mer array. Genome Res. 12, 145–152 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Housby, J.N. & Southern, E.M. Fidelity of DNA ligation: a novel experimental approach based on the polymerization of libraries of oligonucleotides. Nucleic Acids Res. 26, 4259–4266 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Prichard, C.E. & Southern, E.M. Effects of base mismatches on joining of short oligodeoxynulceotides by DNA ligases. Nucleic Acids Res. 25, 3403–3407 (1997).

    Google Scholar 

  17. Cherepanov, A., Yildirim, E. & de Vries, S. Joining of short DNA oligonucleotides with base pair mismatches by T4 DNA ligase. J. Biochem. 129, 61–68 (2001).

    CAS  PubMed  Google Scholar 

  18. James, K.D., Boles, A.R., Henckel, D. & Ellington, A.D. The fidelity of template-directed oligonucleotides ligation and its relevance to DNA computation. Nucleic Acids Res. 26, 5203–5211 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. James, K.D. & Ellington, A.D. Surprising fidelity of template-directed chemical ligation of oligonucleotides. Chem. Biol. 4, 595–605 (1997).

    CAS  PubMed  Google Scholar 

  20. Rossi, R., Montecucco, A., Ciarrocchi, G. & Biamonti, G. Functional characterization of the T4 DNA ligase: a new insight into the mechanism of action. Nucleic Acids Res. 25, 2106–2113 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Aoi, Y., Yoshinobu, T., Tanizawa, K., Kinoshita, K. & Iwasaki, H. Ligation errors in DNA computing. Biosystems 52, 181–187 (1999).

    CAS  PubMed  Google Scholar 

  22. Faulhammer, D., Lipton, R.J. & Landweber, L.F. Fidelity of enzymatic ligation for DNA computing. J. Comput. Bio. 7, 839–848 (2000).

    CAS  Google Scholar 

  23. Breslauer, K.J., Frank, R., Blocker, H. & Marky, L.A. Predicting DNA duplex stability from the base sequence. Proc. Natl. Acad. Sci. USA 83, 3746–3750 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Frierer, S.M. et al. Improved free-energy parameters for prediction of RNA duplex stability. Proc. Natl. Acad. Sci. USA 83, 9373–9377 (1986).

    Google Scholar 

  25. SantaLucia, J. Jr. A unified view of polymer, dumbbell, and oligonucleotides DNA nearest-neighbor thermodynamics. Proc. Natl. Acad. Sci. USA 95, 1460–1465 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ren, B. et al. Genome-wide location and function of DNA binding proteins. Science 290, 2306–2309 (2000).

    CAS  PubMed  Google Scholar 

  27. Roth, F.P., Hughes, J.D., Estep, P.W. & Church, G.M. Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nat. Biotechnol. 16, 939–945 (1998).

    CAS  PubMed  Google Scholar 

  28. Ideker, T. et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292, 929–934 (2001).

    CAS  PubMed  Google Scholar 

  29. Oshiro, G. et al. Parallel identification of new genes in Saccharomyces cerevisiae. Genome Res. 12, 1210–1220 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kumar, A. et al. An integrated approach for finding overlooked genes in yeast. Nat. Biotechnol. 20, 58–63 (2002).

    CAS  PubMed  Google Scholar 

  31. Velculescu, V.E. et al. Characterization of the yeast transcriptome. Cell 88, 243–251 (1997).

    CAS  PubMed  Google Scholar 

  32. Martin, V.J.J., Pitera, D.J., Withers, S.T., Newman, J.D. & Keasling, J.D. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol. 21, 796–802 (2003).

    CAS  PubMed  Google Scholar 

  33. Szczebara, F.M. et al. Total biosynthesis of hydrocortisone from a simple carbon source in yeast. Nat. Biotechnol. 21, 143–149 (2003).

    CAS  PubMed  Google Scholar 

  34. Boder, E.T. & Wittrup, K.D. Yeast surface display for screening combinatorial polypeptide libraries. Nat. Biotechnol. 15, 553–557 (1997).

    CAS  PubMed  Google Scholar 

  35. Holler, P.D. et al. In vitro evolution of a T-cell receptor with high affinity for peptide/MHC. Proc. Natl. Acad. Sci. USA 97, 5387–5392 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sasik, R., Calvo, E. & Corbeil, J. Statistical analysis of high-density oligonucleotides arrays: a multiplicative noise model. Bioinformatics 18, 1633–1640 (2002).

    CAS  PubMed  Google Scholar 

  37. Rinn, J.L. et al. The transcriptional activity of human chromosome 22. Gen. & Dev. 17, 529–540.

  38. Baug, L.R., Hill, A.A., Brown, E.L. & Hunter, C. Quantitative analysis of mRNA amplification by in vitro transcription. Nucleic Acids Res. 29, e29 (2001).

    Google Scholar 

  39. Demers, L.M. et al. Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography. Science 296, 1836–1838 (2002).

    CAS  PubMed  Google Scholar 

  40. Park, S.J., Taton, T.A. & Mirkin, C.A. Array-based electrical detection of DNA with nanoparticle probes. Science 295, 1503–1506 (2002).

    CAS  PubMed  Google Scholar 

  41. Edgar, R., Domrachev, M. & Lash, A.E. Gene Expression Omnibus: NCBI gene and hybridization array data repository. Nucleic Acids Res. 30, 207–210 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhao, J., Hyman, L., Moore, C. & Smith, T.F. Genomic detection of new yeast pre-mRNA 3-end processing. Nucleic Acids Res. 27, 888–894 (1999).

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Gavin Sherlock for expert technical advice; Nam-Hai Chua, Jon Morrow and Paul Kaplan for their scientific input and encouragement; Jose Lage, Grant Carlson and Gisela Carlson for comments on the manuscript; Christina Mityas, Mike Murtha, Yih-Woei Fridell and Shane Weber for their efforts in the early stages of this work; Tom Owen for technical assistance; and Meri Ross for manuscript preparation. We also thank all of our colleagues at Agilix for helpful discussions, continuing scientific input and excellent support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Craig E Parman or Paul M Lizardi.

Ethics declarations

Competing interests

The Agilix employees who are listed as coauthors, and Junhyong Kim and Paul Lizardi (who are scientific advisors to the company), either have or are eligible for stock options through the company's stock option program.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roth, M., Feng, L., McConnell, K. et al. Expression profiling using a hexamer-based universal microarray. Nat Biotechnol 22, 418–426 (2004). https://doi.org/10.1038/nbt948

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt948

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing