[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli

Abstract

The number and scope of methods developed to interrogate and use metabolic network reconstructions has significantly expanded over the past 15 years. In particular, Escherichia coli metabolic network reconstruction has reached the genome scale and been utilized to address a broad spectrum of basic and practical applications in five main categories: metabolic engineering, model-directed discovery, interpretations of phenotypic screens, analysis of network properties and studies of evolutionary processes. Spurred on by these accomplishments, the field is expected to move forward and further broaden the scope and content of network reconstructions, develop new and novel in silico analysis tools, and expand in adaptation to uses of proximal and distal causation in biology. Taken together, these efforts will solidify a mechanistic genotype-phenotype relationship for microbial metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Formulation and use of GEMs as a four-step process.
Figure 2: The iterative reconstruction and history of the E. coli metabolic network.
Figure 3: Applications of the genome-scale model (GEM) of E. coli divided into five categories.
Figure 4: Summary of the in silico methods used in the 64 published E. coli GEM studies reviewed here.
Figure 5: Comparison of computation and experimental data: identification of agreements and disagreements.

Similar content being viewed by others

References

  1. Reed, J.L., Famili, I., Thiele, I. & Palsson, B.O. Towards multidimensional genome annotation. Nat. Rev. Genet. 7, 130–141 (2006).

    CAS  PubMed  Google Scholar 

  2. Palsson, B.Ø. Systems Biology: Properties Of Reconstructed Networks. (Cambridge University Press, New York; 2006).

    Google Scholar 

  3. Price, N.D., Reed, J.L. & Palsson, B.O. Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat. Rev. Microbiol. 2, 886–897 (2004).

    CAS  PubMed  Google Scholar 

  4. Frazier, M.E., Johnson, G.M., Thomassen, D.G., Oliver, C.E. & Patrinos, A. Realizing the potential of the Genome Revolution: The Genomes to life Program. Science 300, 290–293 (2003).

    CAS  PubMed  Google Scholar 

  5. Reed, J.L. & Palsson, B.Ø. Thirteen years of building constraint-based in silico models of Escherichia coli. J. Bacteriol. 185, 2692–2699 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Becker, S.A. et al. Quantitative prediction of cellular metabolism with constraint-based models: The COBRA Toolbox. Nat. Protoc. 2, 727–738 (2007).

    CAS  PubMed  Google Scholar 

  7. Lee, S.Y. et al. Systems-level analysis of genome-scale in silico metabolic models using MetaFluxNet. Biotechnol. Bioproc. Eng. 10, 425–431 (2005).

    CAS  Google Scholar 

  8. Klamt, S., Saez-Rodriguez, J. & Gilles, E.D. Structural and functional analysis of cellular networks with CellNetAnalyzer. BMC Syst. Biol. 1, 2 (2007).

    PubMed  PubMed Central  Google Scholar 

  9. Raman, K. and Chandra, N. PathwayAnalyser: a systems biology tool for flux analysis of metabolic pathways. Available from Nature Precedings <http://dx.doi.org/10.1038/npre.2008.1868.1> (2008).

    Google Scholar 

  10. Luo, R.Y., Liao, S., Zeng, S.Q., Li, Y.X. & Luo, Q.M. FluxExplorer: A general platform for modeling and analyses of metabolic networks based on stoichiometry. Chin. Sci. Bull. 51, 689–696 (2006).

    CAS  Google Scholar 

  11. Hucka, M. et al. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19, 524–531 (2003).

    CAS  PubMed  Google Scholar 

  12. Majewski, R.A. & Domach, M.M. Simple constrained optimization view of acetate overflow in E. coli. Biotechnol. Bioeng. 35, 732–738 (1990).

    CAS  PubMed  Google Scholar 

  13. Varma, A., Boesch, B.W. & Palsson, B.Ø. Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates. Appl. Environ. Microbiol. 59, 2465–2473 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Varma, A., Boesch, B.W. & Palsson, B.Ø. Biochemical production capabilities of Escherichia coli. Biotechnol. Bioeng. 42, 59–73 (1993).

    CAS  PubMed  Google Scholar 

  15. Pramanik, J. & Keasling, J.D. Stoichiometric model of Escherichia coli metabolism: Incorporation of growth-rate dependent biomass composition and mechanistic energy requirements. Biotechnol. Bioeng. 56, 398–421 (1997).

    CAS  PubMed  Google Scholar 

  16. Pramanik, J. & Keasling, J.D. Effect of Escherichia coli biomass composition on central metabolic fluxes predicted by a stoichiometric model. Biotechnol. Bioeng. 60, 230–238 (1998).

    CAS  PubMed  Google Scholar 

  17. Reed, J.L., Vo, T.D., Schilling, C.H. & Palsson, B.Ø. An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biology 4, R54.51–R54.12 (2003).

    Google Scholar 

  18. Edwards, J.S. & Palsson, B.O. The Escherichia coli MG1655 in silico metabolic genotype: Its definition, characteristics, and capabilities. Proc. Natl. Acad. Sci. USA 97, 5528–5533 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Feist, A.M. et al. A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol. Syst. Biol. 3, 121 (2007).

    PubMed  PubMed Central  Google Scholar 

  20. Burgard, A.P., Pharkya, P. & Maranas, C.D. Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 84, 647–657 (2003).

    CAS  PubMed  Google Scholar 

  21. Pharkya, P., Burgard, A.P. & Maranas, C.D. Exploring the overproduction of amino acids using the bilevel optimization framework OptKnock. Biotechnol. Bioeng. 84, 887–899 (2003).

    CAS  PubMed  Google Scholar 

  22. Pharkya, P., Burgard, A.P. & Maranas, C.D. OptStrain: a computational framework for redesign of microbial production systems. Genome Res. 14, 2367–2376 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Alper, H., Jin, Y.S., Moxley, J.F. & Stephanopoulos, G. Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab. Eng. 7, 155–164 (2005).

    CAS  PubMed  Google Scholar 

  24. Alper, H., Miyaoku, K. & Stephanopoulos, G. Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat. Biotechnol. 23, 612–616 (2005).

    CAS  PubMed  Google Scholar 

  25. Fong, S.S. et al. In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol. Bioeng. 91, 643–648 (2005).

    CAS  PubMed  Google Scholar 

  26. Pharkya, P. & Maranas, C.D. An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems. Metab. Eng. 8, 1–13 (2006).

    CAS  PubMed  Google Scholar 

  27. Lee, S.J. et al. Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation. Appl. Environ. Microbiol. 71, 7880–7887 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, Q., Chen, X., Yang, Y. & Zhao, X. Genome-scale in silico aided metabolic analysis and flux comparisons of Escherichia coli to improve succinate production. Appl. Microbiol. Biotechnol. 73, 887–894 (2006).

    CAS  PubMed  Google Scholar 

  29. Park, J.H., Lee, K.H., Kim, T.Y. & Lee, S.Y. Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc. Natl. Acad. Sci. USA 104, 7797–7802 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee, K.H., Park, J.H., Kim, T.Y., Kim, H.U. & Lee, S.Y. Systems metabolic engineering of Escherichia coli for L-threonine production. Mol. Syst. Biol. 3, 149 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Covert, M.W., Knight, E.M., Reed, J.L., Herrgard, M.J. & Palsson, B.Ø. Integrating high-throughput and computational data elucidates bacterial networks. Nature 429, 92–96 (2004).

    CAS  PubMed  Google Scholar 

  32. Chen, L. & Vitkup, D. Predicting genes for orphan metabolic activities using phylogenetic profiles. Genome Biol. 7, R17 (2006).

    PubMed  PubMed Central  Google Scholar 

  33. Kharchenko, P., Chen, L., Freund, Y., Vitkup, D. & Church, G.M. Identifying metabolic enzymes with multiple types of association evidence. BMC Bioinformatics 7, 117 (2006).

    Google Scholar 

  34. Herrgard, M.J., Fong, S.S. & Palsson, B.Ø. Identification of genome-scale metabolic network models using experimentally measured flux profiles. PLoS Comput. Biol. 2, e72 (2006).

    PubMed  PubMed Central  Google Scholar 

  35. Reed, J.L. et al. Systems approach to refining genome annotation. Proc. Natl. Acad. Sci. USA 103, 17480–17484 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Satish Kumar, V., Dasika, M.S. & Maranas, C.D. Optimization based automated curation of metabolic reconstructions. BMC Bioinformatics 8, 212 (2007).

    PubMed  PubMed Central  Google Scholar 

  37. Fuhrer, T., Chen, L., Sauer, U. & Vitkup, D. Computational prediction and experimental verification of the gene encoding the NAD+/NADP+-dependent succinate semialdehyde dehydrogenase in Escherichia coli. J. Bacteriol. 189, 8073–8079 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Edwards, J.S., Ibarra, R.U. & Palsson, B.Ø. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat. Biotechnol. 19, 125–130 (2001).

    CAS  PubMed  Google Scholar 

  39. Burgard, A.P., Vaidyaraman, S. & Maranas, C.D. Minimal reaction sets for Escherichia coli metabolism under different growth requirements and uptake environments. Biotechnol. Prog. 17, 791–797 (2001).

    CAS  PubMed  Google Scholar 

  40. Beard, D.A., Liang, S.D. & Qian, H. Energy balance for analysis of complex metabolic networks. Biophys. J. 83, 79–86 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Segre, D., Vitkup, D. & Church, G.M. Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. USA 99, 15112–15117 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ibarra, R.U., Edwards, J.S. & Palsson, B.Ø. Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420, 186–189 (2002).

    CAS  PubMed  Google Scholar 

  43. Fong, S.S. & Palsson, B.Ø. Metabolic gene-deletion strains of Escherichia coli evolve to computationally predicted growth phenotypes. Nat. Genet. 36, 1056–1058 (2004).

    CAS  PubMed  Google Scholar 

  44. Imielinski, M., Belta, C., Halasz, A. & Rubin, H. Investigating metabolite essentiality through genome-scale analysis of Escherichia coli production capabilities. Bioinformatics 21, 2008–2016 (2005).

    CAS  PubMed  Google Scholar 

  45. Shlomi, T., Berkman, O. & Ruppin, E. Regulatory on/off minimization of metabolic flux changes after genetic perturbations. Proc. Natl. Acad. Sci. USA 102, 7695–7700 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ghim, C.M., Goh, K.I. & Kahng, B. Lethality and synthetic lethality in the genome-wide metabolic network of Escherichia coli. J. Theor. Biol. 237, 401–411 (2005).

    CAS  PubMed  Google Scholar 

  47. Henry, C.S., Jankowski, M.D., Broadbelt, L.J. & Hatzimanikatis, V. Genome-scale thermodynamic analysis of Escherichia coli metabolism. Biophys. J. 90, 1453–1461 (2006).

    CAS  PubMed  Google Scholar 

  48. Samal, A. et al. Low degree metabolites explain essential reactions and enhance modularity in biological networks. BMC Bioinformatics 7, 118 (2006).

    PubMed  PubMed Central  Google Scholar 

  49. Kümmel, A., Panke, S. & Heinemann, M. Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data. Mol. Syst. Biol. 2, 2006.0034 (2006).

    PubMed  PubMed Central  Google Scholar 

  50. Wunderlich, Z. & Mirny, L.A. Using the topology of metabolic networks to predict viability of mutant strains. Biophys. J. 91, 2304–2311 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Gerdes, S. et al. Essential genes on metabolic maps. Curr. Opin. Biotechnol. 17, 448–456 (2006).

    CAS  PubMed  Google Scholar 

  52. Kümmel, A., Panke, S. & Heinemann, M. Systematic assignment of thermodynamic constraints in metabolic network models. BMC Bioinformatics 7, 512 (2006).

    PubMed  PubMed Central  Google Scholar 

  53. Joyce, A.R. et al. Experimental and computational assessment of conditionally essential genes in Escherichia coli. J. Bacteriol. 188, 8259–8271 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Henry, C.S., Broadbelt, L.J. & Hatzimanikatis, V. Thermodynamics-based metabolic flux analysis. Biophys. J. 92, 1792–1805 (2007).

    CAS  PubMed  Google Scholar 

  55. Ederer, M. & Gilles, E.D. Thermodynamically feasible kinetic models of reaction networks. Biophys. J. 92, 1846–1857 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Choi, H.S., Kim, T.Y., Lee, D.Y. & Lee, S.Y. Incorporating metabolic flux ratios into constraint-based flux analysis by using artificial metabolites and converging ratio determinants. J. Biotechnol. 129, 696–705 (2007).

    CAS  PubMed  Google Scholar 

  57. Hoppe, A., Hoffmann, S. & Holzhutter, H.G. Including metabolite concentrations into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks. BMC Syst. Biol. 1, 23 (2007).

    PubMed  PubMed Central  Google Scholar 

  58. Guimera, R., Sales-Pardo, M. & Amaral, L.A. A network-based method for target selection in metabolic networks. Bioinformatics 23, 1616–1622 (2007).

    CAS  PubMed  Google Scholar 

  59. Beg, Q.K. et al. Intracellular crowding defines the mode and sequence of substrate uptake by Escherichia coli and constrains its metabolic activity. Proc. Natl. Acad. Sci. USA 104, 12663–12668 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kim, P.J. et al. Metabolite essentiality elucidates robustness of Escherichia coli metabolism. Proc. Natl. Acad. Sci. USA 104, 13638–13642 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Warren, P.B. & Jones, J.L. Duality, thermodynamics, and the linear programming problem in constraint-based models of metabolism. Phys. Rev. Lett. 99, 108101 (2007).

    PubMed  Google Scholar 

  62. Vazquez, A. et al. Impact of the solvent capacity constraint on E. coli metabolism. BMC Syst. Biol. 2, 7 (2008).

    PubMed  PubMed Central  Google Scholar 

  63. Motter, A.E., Gulbahce, N., Almaas, E. & Barabasi, A.L. Predicting synthetic rescues in metabolic networks. Mol. Syst. Biol. 4, 168 (2008).

    PubMed  PubMed Central  Google Scholar 

  64. Gagneur, J., Jackson, D.B. & Casari, G. Hierarchical analysis of dependency in metabolic networks. Bioinformatics 19, 1027–1034 (2003).

    CAS  PubMed  Google Scholar 

  65. Mahadevan, R. & Schilling, C.H. The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab. Eng. 5, 264–276 (2003).

    CAS  PubMed  Google Scholar 

  66. Burgard, A.P., Nikolaev, E.V., Schilling, C.H. & Maranas, C.D. Flux coupling analysis of genome-scale metabolic network reconstructions. Genome Res. 14, 301–312 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Almaas, E., Kovacs, B., Vicsek, T., Oltvai, Z.N. & Barabasi, A.L. Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature 427, 839–843 (2004).

    CAS  PubMed  Google Scholar 

  68. Nikolaev, E.V., Burgard, A.P. & Maranas, C.D. Elucidation and structural analysis of conserved pools for genome-scale metabolic reconstructions. Biophys. J. 88, 37–49 (2005).

    CAS  PubMed  Google Scholar 

  69. Almaas, E., Oltvai, Z.N. & Barabasi, A.L. The activity reaction core and plasticity of metabolic networks. PLoS Comput. Biol. 1, e68 (2005).

    PubMed  PubMed Central  Google Scholar 

  70. Barrett, C.L., Herring, C.D., Reed, J.L. & Palsson, B.O. The global transcriptional regulatory network for metabolism in Escherichia coli attains few dominant functional states. Proc. Natl. Acad. Sci. USA 102, 19103–19108 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Becker, S.A., Price, N.D. & Palsson, B.O. Metabolite coupling in genome-scale metabolic networks. BMC Bioinformatics 7, 111 (2006).

    PubMed  PubMed Central  Google Scholar 

  72. Imielinski, M., Belta, C., Rubin, H. & Halasz, A. Systematic analysis of conservation relations in Escherichia coli genome-scale metabolic network reveals novel growth media. Biophys. J. 90, 2659–2672 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Beasley, J.E. & Planes, F.J. Recovering metabolic pathways via optimization. Bioinformatics 23, 92–98 (2007).

    CAS  PubMed  Google Scholar 

  74. Shlomi, T., Eisenberg, Y., Sharan, R. & Ruppin, E. A genome-scale computational study of the interplay between transcriptional regulation and metabolism. Mol. Syst. Biol. 3, 101 (2007).

    PubMed  PubMed Central  Google Scholar 

  75. Almaas, E. Optimal flux patterns in cellular metabolic networks. Chaos (Woodbury, N.Y.) 17, 026107 (2007).

    PubMed  Google Scholar 

  76. Sales-Pardo, M., Guimera, R., Moreira, A.A. & Amaral, L.A. Extracting the hierarchical organization of complex systems. Proc. Natl. Acad. Sci. USA 104, 15224–15229 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Notebaart, R.A., Teusink, B., Siezen, R.J. & Papp, B. Co-regulation of metabolic genes is better explained by flux coupling than by network distance. PLoS Comput. Biol. 4, e26 (2008).

    PubMed  PubMed Central  Google Scholar 

  78. Mahadevan, R. & Lovley, D.R. The degree of redundancy in metabolic genes is linked to mode of metabolism. Biophys. J. 94, 1216–1220 (2008).

    CAS  PubMed  Google Scholar 

  79. Samal, A. & Jain, S. The regulatory network of E. coli metabolism as a Boolean dynamical system exhibits both homeostasis and flexibility of response. BMC Syst. Biol. 2, 21 (2008).

    PubMed  PubMed Central  Google Scholar 

  80. Pal, C., Papp, B. & Lercher, M.J. Horizontal gene transfer depends on gene content of the host. Bioinformatics 21 Suppl 2, ii222–ii223 (2005).

    CAS  PubMed  Google Scholar 

  81. Pal, C., Papp, B. & Lercher, M.J. Adaptive evolution of bacterial metabolic networks by horizontal gene transfer. Nat. Genet. 37, 1372–1375 (2005).

    CAS  PubMed  Google Scholar 

  82. Pal, C. et al. Chance and necessity in the evolution of minimal metabolic networks. Nature 440, 667–670 (2006).

    CAS  PubMed  Google Scholar 

  83. Schuetz, R., Kuepfer, L. & Sauer, U. Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol. Syst. Biol. 3, 119 (2007).

    PubMed  Google Scholar 

  84. Varma, A. & Palsson, B.Ø. Metabolic flux balancing: basic concepts, scientific and practical use. Nat. Biotechnol. 12, 994–998 (1994).

    CAS  Google Scholar 

  85. Edwards, J.S., Ramakrishna, R., Schilling, C.H. & Palsson, B.Ø. Metabolic flux balance analysis. in Metabolic Engineering (eds. Lee, S.Y. & Papoutsakis, E.T.) (Marcel Dekker, New York, 1999).

    Google Scholar 

  86. Kauffman, K.J., Prakash, P. & Edwards, J.S. Advances in flux balance analysis. Curr. Opin. Biotechnol. 14, 491–496 (2003).

    CAS  PubMed  Google Scholar 

  87. Fraser-Liggett, C.M. Insights on biology and evolution from microbial genome sequencing. Genome Res. 15, 1603–1610 (2005).

    CAS  PubMed  Google Scholar 

  88. Bro, C., Regenberg, B., Forster, J. & Nielsen, J. In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab. Eng. 8, 102–111 (2006).

    CAS  PubMed  Google Scholar 

  89. Mahadevan, R. et al. Characterization of metabolism in the Fe(iii)-reducing organism Geobacter sulfurreducens by constraint-based modeling. Appl. Environ. Microbiol. 72, 1558–1568 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Feist, A.M., Scholten, J.C.M., Palsson, B. Ø., Brockman, F.J. & Ideker, T. Modeling methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina barkeri. Mol. Syst. Biol. 2, 1–14 (2006).

    Google Scholar 

  91. Breitling, R., Vitkup, D. & Barrett, M.P. New surveyor tools for charting microbial metabolic maps. Nat. Rev. Microbiol. 6, 156–161 (2008).

    CAS  PubMed  Google Scholar 

  92. Blattner, F.R. et al. The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1474 (1997).

    CAS  PubMed  Google Scholar 

  93. Kharchenko, P., Vitkup, D. & Church, G.M. Filling gaps in a metabolic network using expression information. Bioinformatics 20 Suppl 1, I178–I185 (2004).

    CAS  PubMed  Google Scholar 

  94. Green, M.L. & Karp, P.D. A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases. BMC Bioinformatics 5, 76 (2004).

    PubMed  PubMed Central  Google Scholar 

  95. Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).

    PubMed  PubMed Central  Google Scholar 

  96. Mayr, E. This is Biology: the Science of the Living World. (Belknap Press of Harvard University Press, Cambridge, MA; 1997).

    Google Scholar 

  97. Suthers, P.F. et al. Metabolic flux elucidation for large-scale models using 13C labeled isotopes. Metab. Eng. 9, 387–405 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Janssen, P., Goldovsky, L., Kunin, V., Darzentas, N. & Ouzounis, C.A. Genome coverage, literally speaking. The challenge of annotating 200 genomes with 4 million publications. EMBO Rep. 6, 397–399 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Riley, M. et al. Escherichia coli K-12: a cooperatively developed annotation snapshot-2005. Nucleic Acids Res. 34, 1–9 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Allen, T.E. & Palsson, B.Ø. Sequenced-based analysis of metabolic demands for protein synthesis in prokaryotes. J. Theor. Biol. 220, 1–18 (2003).

    CAS  PubMed  Google Scholar 

  101. Mehra, A. & Hatzimanikatis, V. An algorithmic framework for genome-wide modeling and analysis of translation networks. Biophys. J. 90, 1136–1146 (2006).

    CAS  PubMed  Google Scholar 

  102. Thomas, R., Paredes, C.J., Mehrotra, S., Hatzimanikatis, V. & Papoutsakis, E.T. A model-based optimization framework for the inference of regulatory interactions using time-course DNA microarray expression data. BMC Bioinformatics 8, 228 (2007).

    PubMed  PubMed Central  Google Scholar 

  103. Lee, T.I. et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799–804 (2002).

    CAS  PubMed  Google Scholar 

  104. Gianchandani, E.P., Papin, J.A., Price, N.D., Joyce, A.R. & Palsson, B.Ø. Matrix formalism to describe functional states of transcriptional regulatory systems. PLoS Comput. Biol. 2, e101 (2006).

    PubMed  PubMed Central  Google Scholar 

  105. Li, C. et al. Computational discovery of biochemical routes to specialty chemicals. Chem. Eng. Sci. 59, 5051–5060 (2004).

    CAS  Google Scholar 

  106. Edwards, J.S., Ramakrishna, R. & Palsson, B.Ø. Characterizing the metabolic phenotype: a phenotype phase plane analysis. Biotechnol. Bioeng. 77, 27–36 (2002).

    CAS  PubMed  Google Scholar 

  107. Schuster, S. & Hilgetag, C. On elementary flux modes in biochemical reaction systems at steady state. J. Biol. Syst. 2, 165–182 (1994).

    Google Scholar 

  108. Schilling, C.H., Letscher, D. & Palsson, B.Ø. Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J. Theor. Biol. 203, 229–248 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Andrew Joyce, Jennifer Reed, Daniel Segre, Nathan Price, Markus Herrgard and Christian Barrett for their invaluable insight. A.M.F. is supported by National Institutes of Health R01 GM057089 grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Ø Palsson.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1 (PDF 65 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feist, A., Palsson, B. The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nat Biotechnol 26, 659–667 (2008). https://doi.org/10.1038/nbt1401

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1401

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing