[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metastatic colonization by circulating tumour cells

Subjects

Abstract

Metastasis is the main cause of death in people with cancer. To colonize distant organs, circulating tumour cells must overcome many obstacles through mechanisms that we are only now starting to understand. These include infiltrating distant tissue, evading immune defences, adapting to supportive niches, surviving as latent tumour-initiating seeds and eventually breaking out to replace the host tissue. They make metastasis a highly inefficient process. However, once metastases have been established, current treatments frequently fail to provide durable responses. An improved understanding of the mechanistic determinants of such colonization is needed to better prevent and treat metastatic cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Metastatic colonization.
Figure 2: Metastatic niches.
Figure 3: The activation of growth and survival pathways by disseminated cancer cells.
Figure 4: The biology of metastasis, before and after cancer therapy.

Similar content being viewed by others

References

  1. Nagrath, S. et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450, 1235–1239 (2007).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Braun, S. et al. A pooled analysis of bone marrow micrometastasis in breast cancer. N. Engl. J. Med. 353, 793–802 (2005).

    CAS  PubMed  Google Scholar 

  3. Wong, C. W. et al. Apoptosis: an early event in metastatic inefficiency. Cancer Res. 61, 333–338 (2001).

    CAS  PubMed  Google Scholar 

  4. Minn, A. J. et al. Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J. Clin. Invest. 115, 44–55 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Chambers, A. F., Groom, A. C. & MacDonald, I. C. Dissemination and growth of cancer cells in metastatic sites. Nature Rev. Cancer 2, 563–572 (2002).

    CAS  Google Scholar 

  6. Luzzi, K. J. et al. Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am. J. Pathol. 153, 865–873 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Cameron, M. D. et al. Temporal progression of metastasis in lung: cell survival, dormancy, and location dependence of metastatic inefficiency. Cancer Res. 60, 2541–2546 (2000).

    CAS  PubMed  Google Scholar 

  8. Kienast, Y. et al. Real-time imaging reveals the single steps of brain metastasis formation. Nature Med. 16, 116–122 (2010). This study used multiphoton laser-scanning microscopy to track the fate of individual metastasizing cancer cells in the brain.

    CAS  PubMed  Google Scholar 

  9. Valiente, M. et al. Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell 156, 1002–1016 (2014). This study identified that proteins called serpins promote metastasis in the brain by shielding cancer cells from the tissue defences of the reactive brain stroma and also promote vascular co-option mediated by L1CAM.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Heyn, C. et al. In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magn. Reson. Med. 56, 1001–1010 (2006).

    PubMed  Google Scholar 

  11. Malanchi, I. et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481, 85–89 (2012). This study demonstrated that breast cancer stem cells generate a permissive metastatic niche by triggering the secretion of stromal periostin.

    ADS  CAS  Google Scholar 

  12. Calon, A. et al. Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation. Cancer Cell 22, 571–584 (2012). This study found that TGF-β signalling in stromal cells increases the efficiency of organ colonization by colorectal cancer cells and shed light on the paradox that high levels of TGF-β are associated with poorer prognosis in colorectal cancer, despite the fact that cancer cells frequently exhibit inactivating mutations in TGF-β-pathway components.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Nguyen, D. X., Bos, P. D. & Massague, J. Metastasis: from dissemination to organ-specific colonization. Nature Rev. Cancer 9, 274–284 (2009).

    CAS  Google Scholar 

  14. Chaffer, C. L. & Weinberg, R. A. A perspective on cancer cell metastasis. Science 331, 1559–1564 (2011).

    ADS  CAS  PubMed  Google Scholar 

  15. Hall, A. The cytoskeleton and cancer. Cancer Metastasis Rev. 28, 5–14 (2009).

    PubMed  Google Scholar 

  16. Kessenbrock, K., Plaks, V. & Werb, Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141, 52–67 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Quail, D. F. & Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nature Med. 19, 1423–1437 (2013).

    CAS  PubMed  Google Scholar 

  18. Giampieri, S. et al. Localized and reversible TGFβ signalling switches breast cancer cells from cohesive to single cell motility. Nature Cell Biol. 11, 1287–1296 (2009).

    CAS  PubMed  Google Scholar 

  19. Roh-Johnson, M. et al. Macrophage contact induces RhoA GTPase signaling to trigger tumor cell intravasation. Oncogene 33, 4203–4212 (2014).

    CAS  PubMed  Google Scholar 

  20. Friedl, P. & Gilmour, D. Collective cell migration in morphogenesis, regeneration and cancer. Nature Rev. Mol. Cell Biol. 10, 445–457 (2009).

    CAS  Google Scholar 

  21. Magnon, C. et al. Autonomic nerve development contributes to prostate cancer progression. Science 341, 1236361 (2013).

    PubMed  Google Scholar 

  22. Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

    CAS  PubMed  Google Scholar 

  23. Tam, W. L. & Weinberg, R. A. The epigenetics of epithelial-mesenchymal plasticity in cancer. Nature Med. 19, 1438–1449 (2013).

    CAS  PubMed  Google Scholar 

  24. Fischer, K. R. et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature 527, 472–476 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zheng, X. et al. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature 527, 525–530 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tabassum, D. P. & Polyak, K. Tumorigenesis: it takes a village. Nature Rev. Cancer 15, 473–483 (2015).

    CAS  Google Scholar 

  27. Marusyk, A. et al. Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity. Nature 514, 54–58 (2014). This study showed that a minority subclone in a heterogeneous tumour is able to drive proliferation of the whole tumour by overcoming environmental constraints.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cleary, A. S., Leonard, T. L., Gestl, S. A. & Gunther, E. J. Tumour cell heterogeneity maintained by cooperating subclones in Wnt-driven mammary cancers. Nature 508, 113–117 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Calbo, J. et al. A functional role for tumor cell heterogeneity in a mouse model of small cell lung cancer. Cancer Cell 19, 244–256 (2011).

    CAS  PubMed  Google Scholar 

  30. Gundem, G. et al. The evolutionary history of lethal metastatic prostate cancer. Nature 520, 353–357 (2015). This study used whole-genome sequencing and computational analysis to provide evidence for metastasis-to-metastasis spread and the transfer of multiple tumour clones between metastatic sites in people with prostate cancer.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Aceto, N. et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158, 1110–1122 (2014). This study showed that CTC clusters have increased metastatic potential compared with single CTCs.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Labelle, M., Begum, S. & Hynes, R. O. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 20, 576–590 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Le Gal, K. et al. Antioxidants can increase melanoma metastasis in mice. Sci. Transl. Med. 7, 308re8 (2015).

    Google Scholar 

  34. Piskounova, E. et al. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 527, 186–191 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Denève, E. et al. Capture of viable circulating tumor cells in the liver of colorectal cancer patients. Clin. Chem. 59, 1384–1392 (2013).

    PubMed  Google Scholar 

  36. Al-Mehdi, A. B. et al. Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nature Med. 6, 100–102 (2000).

    CAS  PubMed  Google Scholar 

  37. Aird, W. C. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ. Res. 100, 158–173 (2007).

    CAS  PubMed  Google Scholar 

  38. Budczies, J. et al. The landscape of metastatic progression patterns across major human cancers. Oncotarget 6, 570–583 (2015).

    PubMed  Google Scholar 

  39. Minn, A. J. et al. Genes that mediate breast cancer metastasis to lung. Nature 436, 518–524 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Matsuda, Y., Schlange, T., Oakeley, E. J., Boulay, A. & Hynes, N. E. WNT signaling enhances breast cancer cell motility and blockade of the WNT pathway by sFRP1 suppresses MDA-MB-231 xenograft growth. Breast Cancer Res. 11, R32 (2009).

    PubMed  PubMed Central  Google Scholar 

  41. Padua, D. et al. TGFβ primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 133, 66–77 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Gupta, G. P. et al. Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446, 765–770 (2007).

    ADS  CAS  PubMed  Google Scholar 

  43. Tichet, M. et al. Tumour-derived SPARC drives vascular permeability and extravasation through endothelial VCAM1 signalling to promote metastasis. Nature Commun. 6, 6993 (2015).

    ADS  CAS  Google Scholar 

  44. Weis, S., Cui, J., Barnes, L. & Cheresh, D. Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. J. Cell Biol. 167, 223–229 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Schumacher, D., Strilic, B., Sivaraj, K. K., Wettschureck, N. & Offermanns, S. Platelet-derived nucleotides promote tumor-cell transendothelial migration and metastasis via P2Y2 receptor. Cancer Cell 24, 130–137 (2013).

    CAS  PubMed  Google Scholar 

  46. Qian, B. Z. et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475, 222–225 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Bos, P. D. et al. Genes that mediate breast cancer metastasis to the brain. Nature 459, 1005–1009 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sevenich, L. et al. Analysis of tumour- and stroma-supplied proteolytic networks reveals a brain-metastasis-promoting role for cathepsin S. Nature Cell Biol. 16, 876–888 (2014).

    CAS  PubMed  Google Scholar 

  49. Zhou, W. et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 25, 501–515 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Tominaga, N. et al. Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier. Nature Commun. 6, 6716 (2015).

    ADS  CAS  Google Scholar 

  51. Hanahan, D. & Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309–322 (2012).

    CAS  PubMed  Google Scholar 

  52. Fidler, I. J. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nature Rev. Cancer 3, 453–458 (2003).

    ADS  CAS  Google Scholar 

  53. Kim, M. Y. et al. Tumor self-seeding by circulating cancer cells. Cell 139, 1315–1326 (2009).

    PubMed  PubMed Central  Google Scholar 

  54. Obenauf, A. C. et al. Therapy-induced tumour secretomes promote resistance and tumour progression. Nature 520, 368–372 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Eyles, J. et al. Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma. J. Clin. Invest. 120, 2030–2039 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Bidwell, B. N. et al. Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape. Nature Med. 18, 1224–1231 (2012).

    CAS  PubMed  Google Scholar 

  57. Smyth, M. J. et al. Perforin is a major contributor to NK cell control of tumor metastasis. J. Immunol. 162, 6658–6662 (1999).

    CAS  PubMed  Google Scholar 

  58. Paolino, M. et al. The E3 ligase Cbl-b and TAM receptors regulate cancer metastasis via natural killer cells. Nature 507, 508–512 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Milsom, C. C., Lee, C. R., Hackl, C., Man, S. & Kerbel, R. S. Differential post-surgical metastasis and survival in SCID, NOD-SCID and NOD-SCID-IL-2Rγnull mice with parental and subline variants of human breast cancer: implications for host defense mechanisms regulating metastasis. PLoS ONE 8, e71270 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Takeda, K. et al. Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nature Med. 7, 94–100 (2001).

    CAS  PubMed  Google Scholar 

  61. Postow, M. A. et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N. Engl. J. Med. 372, 2006–2017 (2015).

    PubMed  PubMed Central  Google Scholar 

  62. Sharma, P. & Allison, J. P. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161, 205–214 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Morrison, S. J. & Spradling, A. C. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132, 598–611 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Hsu, Y. C., Li, L. & Fuchs, E. Emerging interactions between skin stem cells and their niches. Nature Med. 20, 847–856 (2014).

    CAS  PubMed  Google Scholar 

  65. Schepers, A. G. et al. Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science 337, 730–735 (2012).

    ADS  CAS  PubMed  Google Scholar 

  66. Chen, J. et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488, 522–526 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Driessens, G., Beck, B., Caauwe, A., Simons, B. D. & Blanpain, C. Defining the mode of tumour growth by clonal analysis. Nature 488, 527–530 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kreso, A. & Dick, J. E. Evolution of the cancer stem cell model. Cell Stem Cell 14, 275–291 (2014).

    CAS  PubMed  Google Scholar 

  69. Oskarsson, T., Batlle, E. & Massague, J. Metastatic stem cells: sources, niches, and vital pathways. Cell Stem Cell 14, 306–321 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Shiozawa, Y. et al. Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J. Clin. Invest. 121, 1298–1312 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Müller, A. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56 (2001).

    ADS  PubMed  Google Scholar 

  72. Zhang, X. H. et al. Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma. Cell 154, 1060–1073 (2013). This study showed how stromal signals that resemble those in the bone marrow can skew heterogeneous cancer cell populations in the primary tumour towards a predominance of clones that are primed for bone metastasis.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Hambardzumyan, D. et al. PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes Dev. 22, 436–448 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Cao, Z. et al. Angiocrine factors deployed by tumor vascular niche induce B cell lymphoma invasiveness and chemoresistance. Cancer Cell 25, 350–365 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Carbonell, W. S., Ansorge, O., Sibson, N. & Muschel, R. The vascular basement membrane as “soil” in brain metastasis. PLoS ONE 4, e5857 (2009).

    ADS  PubMed  PubMed Central  Google Scholar 

  76. Oskarsson, T. et al. Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nature Med. 17, 867–874 (2011).

    CAS  PubMed  Google Scholar 

  77. Erler, J. T. et al. Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440, 1222–1226 (2006).

    ADS  CAS  PubMed  Google Scholar 

  78. Gilkes, D. M. et al. Procollagen lysyl hydroxylase 2 is essential for hypoxia-induced breast cancer metastasis. Mol. Cancer Res. 11, 456–466 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Eisinger-Mathason, T. S. et al. Hypoxia-dependent modification of collagen networks promotes sarcoma metastasis. Cancer Discov. 3, 1190–1205 (2013).

    CAS  PubMed  Google Scholar 

  80. Kaplan, R. N. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820–827 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. McAllister, S. S. & Weinberg, R. A. The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nature Cell Biol. 16, 717–727 (2014).

    CAS  PubMed  Google Scholar 

  82. Cox, T. R. et al. The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase. Nature 522, 106–110 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. Costa-Silva, B. et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nature Cell Biol. 17, 816–826 (2015).

    CAS  PubMed  Google Scholar 

  84. Erler, J. T. et al. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15, 35–44 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Wculek, S. K. & Malanchi, I. Neutrophils support lung colonization of metastasis-initiating breast cancer cells. Nature http://dx.doi.org/10.1038/nature16140 (9 December 2015).

  86. Peinado, H. et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature Med. 18, 883–891 (2012).

    CAS  PubMed  Google Scholar 

  87. Hoshino, A. et al. Tumour exosome integrins determine organotropic metastasis. Nature 527, 329–335 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nowak, D. G. et al. MYC drives Pten/Trp53-deficient proliferation and metastasis due to IL6 secretion and AKT suppression via PHLPP2. Cancer Discov. 5, 636–651 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Li, B. et al. Id1-induced IGF-II and its autocrine/endocrine promotion of esophageal cancer progression and chemoresistance—implications for IGF-II and IGF-IR-targeted therapy. Clin. Cancer Res. 20, 2651–2662 (2014).

    PubMed  Google Scholar 

  90. Zhang, X. H. et al. Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell 16, 67–78 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wyckoff, J. et al. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res. 64, 7022–7029 (2004).

    CAS  PubMed  Google Scholar 

  92. Acharyya, S. et al. A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell 150, 165–178 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Tabariès, S. et al. Claudin-2 promotes breast cancer liver metastasis by facilitating tumor cell interactions with hepatocytes. Mol. Cell. Biol. 32, 2979–2991 (2012).

    PubMed  PubMed Central  Google Scholar 

  94. Chen, Q., Zhang, X. H. & Massague, J. Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell 20, 538–549 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Lu, X. et al. VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging α4β1-positive osteoclast progenitors. Cancer Cell 20, 701–714 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Vanharanta, S. et al. Epigenetic expansion of VHL-HIF signal output drives multiorgan metastasis in renal cancer. Nature Med. 19, 50–56 (2013).

    CAS  PubMed  Google Scholar 

  97. Tavazoie, S. F. et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451, 147–152 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ma, L., Teruya-Feldstein, J. & Weinberg, R. A. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449, 682–688 (2007).

    ADS  CAS  PubMed  Google Scholar 

  99. Korpal, M. et al. Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nature Med. 17, 1101–1108 (2011).

    CAS  PubMed  Google Scholar 

  100. Pencheva, N. et al. Convergent multi-miRNA targeting of ApoE drives LRP1/LRP8-dependent melanoma metastasis and angiogenesis. Cell 151, 1068–1082 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Pantel, K. & Brakenhoff, R. H. Dissecting the metastatic cascade. Nature Rev. Cancer 4, 448–456 (2004).

    CAS  Google Scholar 

  102. Sosa, M. S., Bragado, P. & Aguirre-Ghiso, J. A. Mechanisms of disseminated cancer cell dormancy: an awakening field. Nature Rev. Cancer 14, 611–622 (2014).

    CAS  Google Scholar 

  103. Kang, Y. & Pantel, K. Tumor cell dissemination: emerging biological insights from animal models and cancer patients. Cancer Cell 23, 573–581 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Gao, H. et al. The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites. Cell 150, 764–779 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Bragado, P. et al. TGF-β2 dictates disseminated tumour cell fate in target organs through TGF-β-RIII and p38α/β signalling. Nature Cell Biol. 15, 1351–1361 (2013).

    CAS  PubMed  Google Scholar 

  106. Kobayashi, A. et al. Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone. J. Exp. Med. 208, 2641–2655 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Ghajar, C. M. et al. The perivascular niche regulates breast tumour dormancy. Nature Cell Biol. 15, 807–817 (2013).

    CAS  PubMed  Google Scholar 

  108. Barkan, D. et al. Metastatic growth from dormant cells induced by a col-I-enriched fibrotic environment. Cancer Res. 70, 5706–5716 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Aguirre-Ghiso, J. A., Liu, D., Mignatti, A., Kovalski, K. & Ossowski, L. Urokinase receptor and fibronectin regulate the ERKMAPK to p38MAPK activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol. Biol. Cell 12, 863–879 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Strauss, D. C. & Thomas, J. M. Transmission of donor melanoma by organ transplantation. Lancet Oncol. 11, 790–796 (2010).

    PubMed  Google Scholar 

  111. Collignon, F. P., Holland, E. C. & Feng, S. Organ donors with malignant gliomas: an update. Am. J. Transplant. 4, 15–21 (2004).

    PubMed  Google Scholar 

  112. Obenauf, A. C. & Massagué, J. Surviving at a distance: organ-specific metastasis. Trends Cancer 1, 76–91 (2015).

    PubMed  PubMed Central  Google Scholar 

  113. Urosevic, J. et al. Colon cancer cells colonize the lung from established liver metastases through p38 MAPK signalling and PTHLH. Nature Cell Biol. 16, 685–694 (2014).

    CAS  PubMed  Google Scholar 

  114. Weilbaecher, K. N., Guise, T. A. & McCauley, L. K. Cancer to bone: a fatal attraction. Nature Rev. Cancer 11, 411–425 (2011).

    CAS  Google Scholar 

  115. Yin, J. J. et al. TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J. Clin. Invest. 103, 197–206 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Kang, Y. et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537–549 (2003).

    CAS  PubMed  Google Scholar 

  117. Lynch, C. C. et al. MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL. Cancer Cell 7, 485–496 (2005).

    CAS  PubMed  Google Scholar 

  118. Lu, X. et al. ADAMTS1 and MMP1 proteolytically engage EGF-like ligands in an osteolytic signaling cascade for bone metastasis. Genes Dev. 23, 1882–1894 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Sethi, N., Dai, X., Winter, C. G. & Kang, Y. Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell 19, 192–205 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Ell, B. et al. Tumor-induced osteoclast miRNA changes as regulators and biomarkers of osteolytic bone metastasis. Cancer Cell 24, 542–556 (2013).

    CAS  PubMed  Google Scholar 

  121. Kim, S. W. et al. Role of the endothelin axis in astrocyte- and endothelial cell-mediated chemoprotection of cancer cells. Neuro Oncol. 16, 1585–1598 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Early Breast Cancer Trialists' Collaborative Group (EBCTCG) et al. Adjuvant bisphosphonate treatment in early breast cancer: meta-analyses of individual patient data from randomised trials. Lancet 386, 1353–1361 (2015).

  123. Gnant, M. et al. Adjuvant denosumab in breast cancer (ABCSG-18): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet 386, 433–443 (2015).

    CAS  PubMed  Google Scholar 

  124. Holohan, C., Van Schaeybroeck, S., Longley, D. B. & Johnston, P. G. Cancer drug resistance: an evolving paradigm. Nature Rev. Cancer 13, 714–726 (2013).

    CAS  Google Scholar 

  125. Higgins, M. J. & Baselga, J. Targeted therapies for breast cancer. J. Clin. Invest. 121, 3797–3803 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Lito, P. et al. Relief of profound feedback inhibition of mitogenic signaling by RAF inhibitors attenuates their activity in BRAFV600E melanomas. Cancer Cell 22, 668–682 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Gilbert, L. A. & Hemann, M. T. DNA damage-mediated induction of a chemoresistant niche. Cell 143, 355–366 (2010). This study shows that in response to DNA damage, paracrine factors are released in the thymus, which creates a chemoresistant niche that promotes the survival of a minimal residual tumour burden and serves as a reservoir for eventual relapse in a mouse model of Burkitt's lymphoma.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Sun, Y. et al. Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nature Med. 18, 1359–1368 (2012).

    CAS  PubMed  Google Scholar 

  129. Smith, M. P. et al. The immune microenvironment confers resistance to MAPK pathway inhibitors through macrophage-derived TNFα. Cancer Discov. 4, 1214–1229 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Wang, T. et al. BRAF inhibition stimulates melanoma-associated macrophages to drive tumor growth. Clin. Cancer Res. 21, 1652–1664 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Straussman, R. et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487, 500–504 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kurtova, A. V. et al. Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature 517, 209–213 (2015).

    ADS  CAS  PubMed  Google Scholar 

  133. Huang, Q. et al. Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nature Med. 17, 860–866 (2011).

    CAS  PubMed  Google Scholar 

  134. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  136. Levine, J. H. et al. Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 162, 184–197 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Lawson, D. A. et al. Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature 526, 131–135 (2015). Using single-cell gene-expression profiling, this study found that early metastatic cancer cells possess a stem-like gene expression signature and give rise to heterogeneous tumours, which provides evidence to support a hierarchical metastasis stem-cell model.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  138. Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  139. Vanharanta, S. & Massagué, J. Origins of metastatic traits. Cancer Cell 24, 410–421 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Naxerova, K. & Jain, R. K. Using tumour phylogenetics to identify the roots of metastasis in humans. Nature Rev. Clin. Oncol. 12, 258–272 (2015).

    CAS  Google Scholar 

  141. Campbell, P. J. et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467, 1109–1113 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  142. Robinson, D. et al. Integrative clinical genomics of advanced prostate cancer. Cell 161, 1215–1228 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Pencheva, N. & Tavazoie, S. F. Control of metastatic progression by microRNA regulatory networks. Nature Cell Biol. 15, 546–554 (2013).

    CAS  PubMed  Google Scholar 

  144. Klein, C. A. Parallel progression of primary tumours and metastases. Nature Rev. Cancer 9, 302–312 (2009).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank K. Ganesh and T. Wiesner for useful input. J.M. was supported by US National Institutes of Health grants CA163167 and CA129243, the Congressionally Directed Medical Research Programs of the US Department of Defense, Cancer Center Support Grant P30 CA008748 and the Center for Metastasis Research of the Memorial Sloan Kettering Cancer Center. A.C.O. was an Erwin Schröedinger Fellowship awardee (J3013, Austrian Science Fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Massagué.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Massagué, J., Obenauf, A. Metastatic colonization by circulating tumour cells. Nature 529, 298–306 (2016). https://doi.org/10.1038/nature17038

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature17038

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer