[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs

Abstract

Herpesviruses are characterized by their ability to maintain life-long latent infections in their animal hosts. However, the mechanisms that allow establishment and maintenance of the latent state remain poorly understood. Herpes simplex virus 1 (HSV-1) establishes latency in neurons of sensory ganglia, where the only abundant viral gene product is a non-coding RNA, the latency associated transcript (LAT)1,2. Here we show that LAT functions as a primary microRNA (miRNA) precursor that encodes four distinct miRNAs in HSV-1 infected cells. One of these miRNAs, miR-H2-3p, is transcribed in an antisense orientation to ICP0—a viral immediate-early transcriptional activator that is important for productive HSV-1 replication and thought to have a role in reactivation from latency3. We show that miR-H2-3p is able to reduce ICP0 protein expression, but does not significantly affect ICP0 messenger RNA levels. We also identified a fifth HSV-1 miRNA in latently infected trigeminal ganglia, miR-H6, which derives from a previously unknown transcript distinct from LAT. miR-H6 shows extended seed complementarity to the mRNA encoding a second HSV-1 transcription factor, ICP4, and inhibits expression of ICP4, which is required for expression of most HSV-1 genes during productive infection4. These results may explain the reported ability of LAT to promote latency5,6,7,8,9. Thus, HSV-1 expresses at least two primary miRNA precursors in latently infected neurons that may facilitate the establishment and maintenance of viral latency by post-transcriptionally regulating viral gene expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genomic location of HSV-1 miRNAs.
Figure 2: HSV-1 pre-miRNAs.
Figure 3: Downregulation of ICP0 protein expression by HSV-1 miR-H2-3p.
Figure 4: Downregulation of ICP4 protein expression by HSV-1 miR-H6.

Similar content being viewed by others

References

  1. Bloom, D. C. HSV LAT and neuronal survival. Int. Rev. Immunol. 23, 187–198 (2004)

    Article  CAS  Google Scholar 

  2. Stevens, J. G., Wagner, E. K., Devi-Rao, G. B., Cook, M. L. & Feldman, L. T. RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons. Science 235, 1056–1059 (1987)

    Article  ADS  CAS  Google Scholar 

  3. Everett, R. D. ICP0, a regulator of herpes simplex virus during lytic and latent infection. Bioessays 22, 761–770 (2000)

    Article  CAS  Google Scholar 

  4. Preston, C. M. Control of herpes simplex virus type 1 mRNA synthesis in cells infected with wild-type virus or the temperature-sensitive mutant tsK . J. Virol. 29, 275–284 (1979)

    Article  CAS  Google Scholar 

  5. Chen, S. H., Kramer, M. F., Schaffer, P. A. & Coen, D. M. A viral function represses accumulation of transcripts from productive-cycle genes in mouse ganglia latently infected with herpes simplex virus. J. Virol. 71, 5878–5884 (1997)

    Article  CAS  Google Scholar 

  6. Garber, D. A., Schaffer, P. A. & Knipe, D. M. A LAT-associated function reduces productive-cycle gene expression during acute infection of murine sensory neurons with herpes simplex virus type 1. J. Virol. 71, 5885–5893 (1997)

    Article  CAS  Google Scholar 

  7. Thompson, R. L. & Sawtell, N. M. Herpes simplex virus type 1 latency-associated transcript gene promotes neuronal survival. J. Virol. 75, 6660–6675 (2001)

    Article  CAS  Google Scholar 

  8. Thompson, R. L. & Sawtell, N. M. The herpes simplex virus type 1 latency-associated transcript gene regulates the establishment of latency. J. Virol. 71, 5432–5440 (1997)

    Article  CAS  Google Scholar 

  9. Sawtell, N. M. & Thompson, R. L. Herpes simplex virus type 1 latency-associated transcription unit promotes anatomical site-dependent establishment and reactivation from latency. J. Virol. 66, 2157–2169 (1992)

    Article  CAS  Google Scholar 

  10. Farrell, M. J., Dobson, A. T. & Feldman, L. T. Herpes simplex virus latency-associated transcript is a stable intron. Proc. Natl Acad. Sci. USA 88, 790–794 (1991)

    Article  ADS  CAS  Google Scholar 

  11. Kang, W. et al. Characterization of a spliced exon product of herpes simplex type-1 latency-associated transcript in productively infected cells. Virology 356, 106–114 (2006)

    Article  CAS  Google Scholar 

  12. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004)

    Article  CAS  Google Scholar 

  13. Hafner, M. et al. Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods 44, 3–12 (2008)

    Article  CAS  Google Scholar 

  14. Perng, G. C. et al. A novel herpes simplex virus type 1 transcript (AL-RNA) antisense to the 5′ end of the latency-associated transcript produces a protein in infected rabbits. J. Virol. 76, 8003–8010 (2002)

    Article  CAS  Google Scholar 

  15. Cui, C. et al. Prediction and identification of herpes simplex virus 1-encoded microRNAs. J. Virol. 80, 5499–5508 (2006)

    Article  CAS  Google Scholar 

  16. Dölken, L. et al. Mouse cytomegalovirus microRNAs dominate the cellular small RNA profile during lytic infection and show features of posttranscriptional regulation. J. Virol. 81, 13771–13782 (2007)

    Article  Google Scholar 

  17. Feldman, L. T. et al. Spontaneous molecular reactivation of herpes simplex virus type 1 latency in mice. Proc. Natl Acad. Sci. USA 99, 978–983 (2002)

    Article  ADS  CAS  Google Scholar 

  18. Sawtell, N. M. Comprehensive quantification of herpes simplex virus latency at the single-cell level. J. Virol. 71, 5423–5431 (1997)

    Article  CAS  Google Scholar 

  19. Gupta, A., Gartner, J. J., Sethupathy, P., Hatzigeorgiou, A. G. & Fraser, N. W. Anti-apoptotic function of a microRNA encoded by the HSV-1 latency-associated transcript. Nature 442, 82–85 (2006)

    Article  ADS  CAS  Google Scholar 

  20. Cai, W. et al. The herpes simplex virus type 1 regulatory protein ICP0 enhances virus replication during acute infection and reactivation from latency. J. Virol. 67, 7501–7512 (1993)

    Article  CAS  Google Scholar 

  21. Halford, W. P., Kemp, C. D., Isler, J. A., Davido, D. J. & Schaffer, P. A. ICP0, ICP4, or VP16 expressed from adenovirus vectors induces reactivation of latent herpes simplex virus type 1 in primary cultures of latently infected trigeminal ganglion cells. J. Virol. 75, 6143–6153 (2001)

    Article  CAS  Google Scholar 

  22. Chen, S. H. et al. Neither LAT nor open reading frame P mutations increase expression of spliced or intron-containing ICP0 transcripts in mouse ganglia latently infected with herpes simplex virus. J. Virol. 76, 4764–4772 (2002)

    Article  CAS  Google Scholar 

  23. Thompson, R. L., Shieh, M. T. & Sawtell, N. M. Analysis of herpes simplex virus ICP0 promoter function in sensory neurons during acute infection, establishment of latency, and reactivation in vivo . J. Virol. 77, 12319–12330 (2003)

    Article  CAS  Google Scholar 

  24. Pfeffer, S. et al. Identification of virus-encoded microRNAs. Science 304, 734–736 (2004)

    Article  ADS  CAS  Google Scholar 

  25. Yeh, L. & Schaffer, P. A. A novel class of transcripts expressed with late kinetics in the absence of ICP4 spans the junction between the long and short segments of the herpes simplex virus type 1 genome. J. Virol. 67, 7373–7382 (1993)

    Article  CAS  Google Scholar 

  26. Randall, G. & Roizman, B. Transcription of the derepressed open reading frame P of herpes simplex virus 1 precludes the expression of the antisense γ134.5 gene and may account for the attenuation of the mutant virus. J. Virol. 71, 7750–7757 (1997)

    Article  CAS  Google Scholar 

  27. Lee, L. Y. & Schaffer, P. A. A virus with a mutation in the ICP4-binding site in the L/ST promoter of herpes simplex virus type 1, but not a virus with a mutation in open reading frame P, exhibits cell-type-specific expression of γ134.5 transcripts and latency-associated transcripts. J. Virol. 72, 4250–4264 (1998)

    Article  CAS  Google Scholar 

  28. Murphy, E., Vanicek, J., Robins, H., Shenk, T. & Levine, A. J. Suppression of immediate-early viral gene expression by herpesvirus-coded microRNAs: implications for latency. Proc. Natl Acad. Sci. USA 105, 5453–5458 (2008)

    Article  ADS  CAS  Google Scholar 

  29. Coen, D. M., Fleming, H. E., Leslie, L. K. & Retondo, M. J. Sensitivity of arabinosyladenine-resistant mutants of herpes simplex virus to other antiviral drugs and mapping of drug hypersensitivity mutations to the DNA polymerase locus. J. Virol. 53, 477–488 (1985)

    Article  CAS  Google Scholar 

  30. Goldin, A. L., Sandri-Goldin, R. M., Levine, M. & Glorioso, J. C. Cloning of herpes simplex virus type 1 sequences representing the whole genome. J. Virol. 38, 50–58 (1981)

    Article  CAS  Google Scholar 

  31. Sekulovich, R. E., Leary, K. & Sandri-Goldin, R. M. The herpes simplex virus type 1 α protein ICP27 can act as a trans-repressor or a trans-activator in combination with ICP4 and ICP0. J. Virol. 62, 4510–4522 (1988)

    Article  CAS  Google Scholar 

  32. Brummelkamp, T. R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002)

    Article  ADS  CAS  Google Scholar 

  33. Wiegand, H. L., Doehle, B. P., Bogerd, H. P. & Cullen, B. R. A second human antiretroviral factor, APOBEC3F, is suppressed by the HIV-1 and HIV-2 Vif proteins. EMBO J. 23, 2451–2458 (2004)

    Article  CAS  Google Scholar 

  34. Cai, X. et al. Kaposi’s sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc. Natl Acad. Sci. USA 102, 5570–5575 (2005)

    Article  ADS  CAS  Google Scholar 

  35. Alvira, M. R., Goins, W. F., Cohen, J. B. & Glorioso, J. C. Genetic studies exposing the splicing events involved in herpes simplex virus type 1 latency-associated transcript production during lytic and latent infection. J. Virol. 73, 3866–3876 (1999)

    Article  CAS  Google Scholar 

  36. Leib, D. A. et al. Immediate-early regulatory gene mutants define different stages in the establishment and reactivation of herpes simplex virus latency. J. Virol. 63, 759–768 (1989)

    Article  CAS  Google Scholar 

  37. Chen, C. et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 33, e179 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. Sandri-Goldin for reagents used in this research and S. Boissel for contributions to PCR primer design. This work was supported by National Institutes of Health grants to B.R.C. and D.M.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan R. Cullen.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-3 with Legends and Supplementary Tables 1-6 and Legends. The figures show control data and additional experimental data in support of the manuscript’s conclusions. (PDF 631 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Umbach, J., Kramer, M., Jurak, I. et al. MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 454, 780–783 (2008). https://doi.org/10.1038/nature07103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07103

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing