Abstract
Functional magnetic resonance imaging (fMRI) is currently the mainstay of neuroimaging in cognitive neuroscience. Advances in scanner technology, image acquisition protocols, experimental design, and analysis methods promise to push forward fMRI from mere cartography to the true study of brain organization. However, fundamental questions concerning the interpretation of fMRI data abound, as the conclusions drawn often ignore the actual limitations of the methodology. Here I give an overview of the current state of fMRI, and draw on neuroimaging and physiological data to present the current understanding of the haemodynamic signals and the constraints they impose on neuroimaging data interpretation.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
£199.00 per year
only £3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Wandell, B. A., Brewer, A. A. & Dougherty, R. F. Visual field map clusters in human cortex. Phil. Trans. R. Soc. Lond. B 360, 693–707 (2005)This paper provides a description of human visual field maps and the rationale generating and naming them.
Haacke, E. M. et al. Magnetic Resonance Imaging: Principles and Sequence Design (John Wiley & Son, New York, 1999)
Wood, M. L. & Wehrli, F. W. Principles of magnetic resonance imaging. In Magnetic Resonance Imaging 3rd edn (eds Stark, D. D. & Bradley, W.) 1–14 (Mosby, St Louis/Baltimore/Boston/London/Tokyo, 1999)
Buxton, R. B. Introduction to Functional Magnetic Resonance Imaging: Principles and Techniques (Cambridge Univ. Press, Cambridge, UK, 2002)
Ogawa, S. & Lee, T. M. Magnetic resonance imaging of blood vessels at high fields: in vivo and in vitro measurements and image simulation. Magn. Reson. Med. 16, 9–18 (1990)
Ogawa, S. et al. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn. Reson. Med. 14, 68–78 (1990)
Motter, B. C. Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. J. Neurophysiol. 70, 909–919 (1993)
Luck, S. J., Chelazzi, L., Hillyard, S. A. & Desimone, R. Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J. Neurophysiol. 77, 24–42 (1997)
Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M. & Raichle, M. E. Positron emission tomographic studies of the processing of single words. J. Cogn. Neurosci. 1, 153–170 (1989)
Friston, K. J. et al. The trouble with cognitive subtraction. Neuroimage 4, 97–104 (1996)
Poeppel, D. A critical review of PET studies of phonological processing. Brain Lang. 55, 317–351 (1996)
Buckner, R. L. et al. Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging. Proc. Natl Acad. Sci. USA 93, 14878–14883 (1996)
Krekelberg, B., Boynton, G. M. & van Wezel, R. J. Adaptation: from single cells to BOLD signals. Trends Neurosci. 29, 250–256 (2006). This paper discusses fMRI adaptation designs.
Friston, K. J. et al. Analysis of fMRI time-series revisited. Neuroimage 2, 45–53 (1995)
Haynes, J. D. & Rees, G. Decoding mental states from brain activity in humans. Nature Rev. Neurosci. 7, 523–534 (2006)
Braitenberg, V. & Schuez, A. Cortex: Statistics and Geometry of Neuronal Connectivity 2nd edn (Springer, Berlin, 1998)
Douglas, R. J. & Martin, K. A. Neuronal circuits of the neocortex. Annu. Rev. Neurosci. 27, 419–451 (2004)This paper provides a review of cortical microcircuits.
Ullman, S. Sequence seeking and counter streams: A computational model for bidirectional information flow in the visual cortex. Cereb. Cortex 5, 1–11 (1995)
Friston, K. A theory of cortical responses. Phil. Trans. R. Soc. B 360, 815–836 (2005)
Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991)
Douglas, R. J. & Martin, K. A. Mapping the matrix: the ways of neocortex. Neuron 56, 226–238 (2007)
Freund, T. F. Interneuron diversity series: Rhythm and mood in perisomatic inhibition. Trends Neurosci. 26, 489–495 (2003)
Markram, H. et al. Interneurons of the neocortical inhibitory system. Nature Rev. Neurosci. 5, 793–807 (2004)This paper is a review on the various types of interneuron.
DeFelipe, J. Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex. J. Chem. Neuroanat. 14, 1–19 (1997)
Szabadics, J. et al. Excitatory effect of GABAergic axo-axonic cells in cortical microcircuits. Science 311, 233–235 (2006)
Douglas, R. J., Koch, C., Mahowald, M., Martin, K. A. & Suarez, H. H. Recurrent excitation in neocortical circuits. Science 269, 981–985 (1995)
Shadlen, M. N. & Newsome, W. T. Noise, neural codes and cortical organization. Curr. Opin. Neurobiol. 4, 569–579 (1994)
Chance, F. S., Abbott, L. F. & Reyes, A. D. Gain modulation from background synaptic input. Neuron 35, 773–782 (2002)
Brunel, N. & Wang, X. J. Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. J. Comput. Neurosci. 11, 63–85 (2001)
Steriade, M., Timofeev, I. & Grenier, F. Natural waking and sleep states: a view from inside neocortical neurons. J. Neurophysiol. 85, 1969–1985 (2001)
McCormick, D. A., Shu, Y. S. & Hasenstaub, A. Balanced recurrent excitation and inhibition in local cortical networks. in Excitatory-Inhibitory Balance: Synapses, Circuits, Systems (ed. Hensch, T.) (Kluver Academic Press, New York, 2003)
Haider, B., Duque, A., Hasenstaub, A. R. & McCormick, D. A. Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. J. Neurosci. 26, 4535–4545 (2006). This paper provides a demonstration of the regulation of excitation–inhibition balance changes in vivo .
Sherman, S. M. & Guillery, R. W. Exploring the Thalamus and its Role in Cortical Function 2nd edn (MIT Press, Cambridge, Massachusetts, 2006)
Crick, F. & Koch, C. Constraints on cortical and thalamic projections: the no-strong-loops hypothesis. Nature 391, 245–250 (1998)
Jueptner, M. & Weiller, C. Review: does measurement of regional cerebral blood flow reflect synaptic activity? Implications for PET and fMRI. Neuroimage 2, 148–156 (1995)
Sokoloff, L. et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28, 897–916 (1977)
Nudo, R. J. & Masterton, R. B. Stimulation-induced [14C]2-deoxyglucose labeling of synaptic activity in the central auditory system. J. Comp. Neurol. 245, 553–565 (1986)
Ackermann, R. F., Finch, D. M., Babb, T. L. & Engel, J. Increased glucose metabolism during long-duration recurrent inhibition of hippocampal pyramidal cells. J. Neurosci. 4, 251–264 (1984)
Stefanovic, B., Warnking, J. M. & Pike, G. B. Hemodynamic and metabolic responses to neuronal inhibition. Neuroimage 22, 771–778 (2004)
Shmuel, A. et al. Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain. Neuron 36, 1195–1210 (2002)
Shmuel, A., Augath, M., Oeltermann, A. & Logothetis, N. K. Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nature Neurosci. 9, 569–577 (2006)
Devor, A. et al. Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level-dependent signal. J. Neurosci. 27, 4452–4459 (2007)
Attwell, D. & Gibb, A. Neuroenergetics and the kinetic design of excitatory synapses. Nature Rev. Neurosci. 6, 841–849 (2005)
Payne, J. A., Rivera, C., Voipio, J. & Kaila, K. Cation-chloride co-transporters in neuronal communication, development and trauma. Trends Neurosci. 26, 199–206 (2003)
McCormick, D. A., Connors, B. W., Lighthall, J. W. & Prince, D. A. Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J. Neurophysiol. 54, 782–806 (1985)
Buzsaki, G., Geisler, C., Henze, D. A. & Wang, X. J. Interneuron diversity series: Circuit complexity and axon wiring economy of cortical interneurons. Trends Neurosci. 27, 186–193 (2004)
Wang, Y., Gupta, A., Toledo-Rodriguez, M., Wu, C. Z. & Markram, H. Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. Cereb. Cortex 12, 395–410 (2002)
Buzsaki, G., Kaila, K. & Raichle, M. Inhibition and brain work. Neuron 56, 771–783 (2007)
Peppiatt, C. M. et al. Bidirectional control of CNS capillary diameter by pericytes. Nature 443, 700–704 (2006)
Hamel, E. Perivascular nerves and the regulation of cerebrovascular tone. J. Appl. Physiol. 100, 1059–1064 (2006)
Kayser, C. & Konig, P. Stimulus locking and feature selectivity prevail in complementary frequency ranges of V1 local field potentials. Eur. J. Neurosci. 19, 485–489 (2004)
Liu, J. & Newsome, W. T. Local field potential in cortical area MT: Stimulus tuning and behavioral correlations. J. Neurosci. 26, 7779–7790 (2006)
Wilke, M., Logothetis, N. K. & Leopold, D. A. Local field potential reflects perceptual suppression in monkey visual cortex. Proc. Natl Acad. Sci. USA 103, 17507–17512 (2006)
Logothetis, N. K. et al. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001)
Goense, J. B. M. & Logothetis, N. K. Neurophysiology of the BOLD fMRI signal in awake monkeys. Current Biol. 18, 631–640 (2008)
Mathiesen, C., Caesar, K., Akgoren, N. & Lauritzen, M. Modification of activity-dependent increases of cerebral blood flow by excitatory synaptic activity and spikes in rat cerebellar cortex. J. Physiol. 512, 555–566 (1998)
Viswanathan, A. & Freeman, R. D. Neurometabolic coupling in cerebral cortex reflects synaptic more than spiking activity. Nature Neurosci. 10, 1308–1312 (2007). This paper provides a demonstration of the coupling between CMRO 2 and the LFP.
Rauch, A., Rainer, G. & Logothetis, N. K. The effect of a serotonin-induced dissociation between spiking and perisynaptic activity on BOLD functional MRI. Proc. Natl Acad. Sci. USA 105, 6759–6764 (2008)
Rockel, A. J., Hiorns, R. W. & Powell, T. P. The basic uniformity in structure of the neocortex. Brain 103, 221–244 (1980)
Cragg, B. G. The density of synapses and neurones in the motor and visual areas of the cerebral cortex. J. Anat. 101, 639–654 (1967)
Schuz, A. & Demianenko, G. P. Constancy and variability in cortical structure. A study on synapses and dendritic spines in hedgehog and monkey. J. Hirnforsch. 36, 113–122 (1995)
Logothetis, N. K. & Wandell, B. A. Interpreting the BOLD signal. Annu. Rev. Physiol. 66, 735–769 (2004)
Shoham, S., O’Connor, D. H. & Segev, R. How silent is the brain: is there a “dark matter” problem in neuroscience? J. Comp. Physiol. A 192, 777–784 (2006)
Born, R. T. & Bradley, D. C. Structure and function of visual area MT. Annu. Rev. Neurosci. 28, 157–189 (2005)
Zeki, S. Thirty years of a very special visual area, area V5. J. Physiol. 557, 1–2 (2004)
Mather, G., Verstraten, F. A. & Anstis, S. M. The Motion Aftereffect: a Modern Perspective (MIT Press, Cambridge, Massachusetts, 1998)
Tootell, R. B. H. et al. Visual motion aftereffect in human cortical area MT revealed by functional magnetic-resonance-imaging. Nature 375, 139–141 (1995)
Corbetta, M., Miezin, F. M., Dobmeyer, S., Shulman, G. L. & Petersen, S. E. Attentional modulation of neural processing of shape, color, and velocity in humans. Science 248, 1556–1559 (1990)
Huk, A. C., Ress, D. & Heeger, D. J. Neuronal basis of the motion aftereffect reconsidered. Neuron 32, 161–172 (2001)
Blake, R. & Logothetis, N. K. Visual competition. Nature Rev. Neurosci. 3, 13–21 (2002)
Douglas, R. J., Martin, K. A. C. & Whitteridge, D. A canonical microcircuit for neocortex. Neural Comput. 1, 480–488 (1989)
Bartels, A., Logothetis, N. K. & Moutoussis, K. FMRI and its interpretations: An illustration on directional sensitivity in area V5/MT. Trends Neurosci (in the press)
Acknowledgements
I thank my co-workers A. Bartels, J. Goense, M. Munk and A.-C. Zappe for discussions; my colleagues P. Hoffmann, C. Koch, K. Martin, A. Schüz, C. Kayser and R. Turner for their insightful comments and suggestions on the latest version of the article; J. Goense, B. Weber and A. L. Keller for providing graphics; and D. Blaurock for language corrections. The work is supported by the Max Planck Society.
Author information
Authors and Affiliations
Corresponding author
Supplementary information
Supplementary information
The file contains Supplementary Notes with additional references. (PDF 692 kb)
Rights and permissions
About this article
Cite this article
Logothetis, N. What we can do and what we cannot do with fMRI. Nature 453, 869–878 (2008). https://doi.org/10.1038/nature06976
Issue Date:
DOI: https://doi.org/10.1038/nature06976