Abstract
Haploinsufficiency of Dll4, a vascular-specific Notch ligand, has shown that it is essential for embryonic vascular development and arteriogenesis1,2,3. Mechanistically, it is unclear how the Dll4-mediated Notch pathway contributes to complex vascular processes that demand meticulous coordination of multiple signalling pathways. Here we show that Dll4-mediated Notch signalling has a unique role in regulating endothelial cell proliferation and differentiation. Neutralizing Dll4 with a Dll4-selective antibody rendered endothelial cells hyperproliferative, and caused defective cell fate specification or differentiation both in vitro and in vivo. In addition, blocking Dll4 inhibited tumour growth in several tumour models. Remarkably, antibodies against Dll4 and antibodies against vascular endothelial growth factor (VEGF) had paradoxically distinct effects on tumour vasculature. Our data also indicate that Dll4-mediated Notch signalling is crucial during active vascularization, but less important for normal vessel maintenance. Furthermore, unlike blocking Notch signalling globally, neutralizing Dll4 had no discernable impact on intestinal goblet cell differentiation4,5, supporting the idea that Dll4-mediated Notch signalling is largely restricted to the vascular compartment. Therefore, targeting Dll4 might represent a broadly efficacious and well-tolerated approach for the treatment of solid tumours.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
£199.00 per year
only £3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Duarte, A. et al. Dosage-sensitive requirement for mouse Dll4 in artery development. Genes Dev. 18, 2474–2478 (2004)
Krebs, L. T. et al. Haploinsufficient lethality and formation of arteriovenous malformations in Notch pathway mutants. Genes Dev. 18, 2469–2473 (2004)
Gale, N. W. et al. Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc. Natl Acad. Sci. USA 101, 15949–15954 (2004)
van Es, J. H. et al. Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435, 959–963 (2005)
Fre, S. et al. Notch signals control the fate of immature progenitor cells in the intestine. Nature 435, 964–968 (2005)
Patel, N. S. et al. Up-regulation of delta-like 4 ligand in human tumor vasculature and the role of basal expression in endothelial cell function. Cancer Res. 65, 8690–8697 (2005)
Lee, C. V. et al. High-affinity human antibodies from phage-displayed synthetic Fab libraries with a single framework scaffold. J. Mol. Biol. 340, 1073–1093 (2004)
Liang, W. C. et al. Cross-species vascular endothelial growth factor (VEGF)-blocking antibodies completely inhibit the growth of human tumor xenografts and measure the contribution of stromal VEGF. J. Biol. Chem. 281, 951–961 (2006)
Nakatsu, M. N. et al. Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: the role of fibroblasts and Angiopoietin-1. Microvasc. Res. 66, 102–112 (2003)
Baron, M. An overview of the Notch signalling pathway. Semin. Cell Dev. Biol. 14, 113–119 (2003)
Milano, J. et al. Modulation of notch processing by gamma-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation. Toxicol. Sci. 82, 341–358 (2004)
Williams, C. K., Li, J. L., Murga, M., Harris, A. L. & Tosato, G. Up-regulation of the Notch ligand Delta-like 4 inhibits VEGF-induced endothelial cell function. Blood 107, 931–939 (2006)
Stone, J. & Dreher, Z. Relationship between astrocytes, ganglion cells and vasculature of the retina. J. Comp. Neurol. 255, 35–49 (1987)
Gerhardt, H. et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161, 1163–1177 (2003)
Fruttiger, M. Development of the mouse retinal vasculature: angiogenesis versus vasculogenesis. Invest. Ophthalmol. Vis. Sci. 43, 522–527 (2002)
Claxton, S. & Fruttiger, M. Periodic Delta-like 4 expression in developing retinal arteries. Gene Expr. Patterns 5, 123–127 (2004)
Ferrara, N. The role of VEGF in the regulation of physiological and pathological angiogenesis. EXS 94, 209–231 (2005)
Coultas, L., Chawengsaksophak, K. & Rossant, J. Endothelial cells and VEGF in vascular development. Nature 438, 937–945 (2005)
Lawson, N. D. et al. Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development 128, 3675–3683 (2001)
Ferrara, N. & Kerbel, R. S. Angiogenesis as a therapeutic target. Nature 438, 967–974 (2005)
Jain, R. K., Duda, D. G., Clark, J. W. & Loeffler, J. S. Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nature Clin. Pract. Oncol. 3, 24–40 (2006)
Wong, G. T. et al. Chronic treatment with the gamma-secretase inhibitor LY-411,575 inhibits beta-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. J. Biol. Chem. 279, 12876–12882 (2004)
Acknowledgements
We thank G. Fuh and V. Lee for the antibody phage libraries, L. DeGuzman and J. Zavala-Solorio for technical assistance, M. Vasser and P. Ng for oligonucleotide synthesis and purification, Genentech Protein Chemistry, Pathology Lab and core DNA sequencing facility for support services, W. Ye, C. Siebel, N. Ferrara, J. Zha and K. O'Rourke for discussion, and V. Dixit for encouragement.
Author Contributions J. R. and G. Z. designed and performed experiments. Y. W. supervised antibody generation. S. S. and W. L generated antibodies. Y. C., J. K. and R. J. W. performed neonatal mouse retina studies and data analysis. C. C. performed pathological analysis. I. K. provided expertise and assistance on confocal imaging. M. S. and M. C. performed mouse intestine studies. C. T. and J. H. generated analytical reagents. F. de S. supervised mouse intestine studies. G. P. supervised tumour studies of combination therapy. M. Y. designed and conceptualized the study, and wrote the manuscript. All authors made comments on the manuscript.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.
Supplementary information
Supplementary Figures
This file contains Supplementary Figures 1–7.
Supplementary Methods
This file contains additional details of the methods used in this study.
Rights and permissions
About this article
Cite this article
Ridgway, J., Zhang, G., Wu, Y. et al. Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 444, 1083–1087 (2006). https://doi.org/10.1038/nature05313
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/nature05313
This article is cited by
-
Crosstalk between colorectal CSCs and immune cells in tumorigenesis, and strategies for targeting colorectal CSCs
Experimental Hematology & Oncology (2024)
-
Milestones in tumor vascularization and its therapeutic targeting
Nature Cancer (2024)
-
Angiotensin-converting enzyme inhibitor promotes angiogenesis through Sp1/Sp3-mediated inhibition of notch signaling in male mice
Nature Communications (2023)
-
Alleviating hypoxia to improve cancer immunotherapy
Oncogene (2023)
-
Notch1 and Notch4 core binding domain peptibodies exhibit distinct ligand-binding and anti-angiogenic properties
Angiogenesis (2023)