[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

State transitions and light adaptation require chloroplast thylakoid protein kinase STN7

Abstract

Photosynthetic organisms are able to adjust to changing light conditions through state transitions, a process that involves the redistribution of light excitation energy between photosystem II (PSII) and photosystem I (PSI)1,2. Balancing of the light absorption capacity of these two photosystems is achieved through the reversible association of the major antenna complex (LHCII) between PSII and PSI (ref. 3). Excess stimulation of PSII relative to PSI leads to the reduction of the plastoquinone pool and the activation of a kinase4,5; the phosphorylation of LHCII; and the displacement of LHCII from PSII to PSI (state 2). Oxidation of the plastoquinone pool by excess stimulation of PSI reverses this process (state 1). The Chlamydomonas thylakoid-associated Ser-Thr kinase Stt7, which is required for state transitions, has an orthologue named STN7 in Arabidopsis6. Here we show that loss of STN7 blocks state transitions and LHCII phosphorylation. In stn7 mutant plants the plastoquinone pool is more reduced and growth is impaired under changing light conditions, indicating that STN7, and probably state transitions, have an important role in response to environmental changes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The STN7 protein kinase of Arabidopsis is required for state transitions.
Figure 2: Phosphorylation of LHCII is diminished in stn7 under state 2 conditions.
Figure 3: Measurements of photosynthetic parameters for stn7 detached leaves.
Figure 4: Growth of the stn7 mutant is impaired under changing light conditions.

Similar content being viewed by others

References

  1. Bonaventura, C. & Myers, J. Fluorescence and oxygen evolution from Chlorella pyrenoidosa. Biochim. Biophys. Acta 189, 366–383 (1969)

    Article  CAS  Google Scholar 

  2. Murata, N. Control of excitation transfer in photosynthesis. I. Light-induced change of chlorophyll a fluorescence in Porphyridium cruentum. Biochim. Biophys. Acta 172, 242–251 (1969)

    Article  CAS  Google Scholar 

  3. Allen, J. F. Protein phosphorylation in regulation of photosynthesis. Biochim. Biophys. Acta 1098, 275–335 (1992)

    Article  CAS  Google Scholar 

  4. Vener, A. V., van Kan, P. J., Rich, P. R., Ohad, I. I. & Andersson, B. Plastoquinol at the quinol oxidation site of reduced cytochrome bf mediates signal transduction between light and protein phosphorylation: Thylakoid protein kinase deactivation by a single-turnover flash. Proc. Natl Acad. Sci. USA 94, 1585–1590 (1997)

    Article  ADS  CAS  Google Scholar 

  5. Zito, F. et al. The Qo site of cytochrome b6f complexes controls the activation of the LHCII kinase. EMBO J. 18, 2961–2969 (1999)

    Article  CAS  Google Scholar 

  6. Depège, N., Bellafiore, S. & Rochaix, J. D. Role of chloroplast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas. Science 299, 1572–1575 (2003)

    Article  ADS  Google Scholar 

  7. Bennett, J. Phosphorylation of chloroplast membrane polypeptides. Nature 269, 344–346 (1977)

    Article  ADS  CAS  Google Scholar 

  8. Bennett, J. Chloroplast phosphoproteins. Phosphorylation of polypeptides of the light-harvesting chlorophyll protein complex. Eur. J. Biochem. 99, 133–137 (1979)

    Article  CAS  Google Scholar 

  9. Race, H. L. & Hind, G. A protein kinase in the core of photosystem II. Biochemistry 35, 13006–13010 (1996)

    Article  CAS  Google Scholar 

  10. Sokolenko, A. et al. The 64 kDa polypeptide of spinach may not be the LHCII kinase, but a lumen-located polyphenol oxidase. FEBS Lett. 371, 176–180 (1995)

    Article  CAS  Google Scholar 

  11. Jensen, P. E., Gilpin, M., Knoetzel, J. & Scheller, H. V. The PSI-K subunit of photosystem I is involved in the interaction between light-harvesting complex I and the photosystem I reaction center core. J. Biol. Chem. 275, 24701–24708 (2000)

    Article  CAS  Google Scholar 

  12. Allen, J. F., Bennett, J., Steinback, K. E. & Arntzen, C. J. Chloroplast protein phosphorylation couples plastoquinone redox state to distribution of excitation energy between photosystems. Nature 291, 25–29 (1981)

    Article  ADS  CAS  Google Scholar 

  13. Wollman, F. A. & Delepelaire, P. Correlation between changes in light energy distribution and changes in thylakoid membrane polypeptide phosphorylation in Chlamydomonas reinhardtii. J. Cell Biol. 98, 1–7 (1984)

    Article  CAS  Google Scholar 

  14. Bassi, R., Giacometti, G. M. & Simpson, D. J. Changes in the organization of stroma membranes induced by in vivo state 1-state 2 transition. Biochim. Biophys. Acta 935, 152–165 (1988)

    Article  CAS  Google Scholar 

  15. Wollman, F. A. & Lemaire, C. Studies on kinase-controlled state transitions in photosystem II and b6f mutants from Chlamydomonas reinhardtii which lack quinone-binding proteins. Biochim. Biophys. Acta 933, 85–94 (1988)

    Article  CAS  Google Scholar 

  16. Zhang, S. & Scheller, H. V. Light-harvesting complex II binds to several small subunits of photosystem I. J. Biol. Chem. 279, 3180–3187 (2004)

    Article  CAS  Google Scholar 

  17. Snyders, S. & Kohorn, B. D. TAKs, thylakoid membrane protein kinases associated with energy transduction. J. Biol. Chem. 274, 9137–9140 (1999)

    Article  CAS  Google Scholar 

  18. Snyders, S. & Kohorn, B. D. Disruption of thylakoid-associated kinase 1 leads to alteration of light harvesting in Arabidopsis. J. Biol. Chem. 276, 32169–32176 (2001)

    Article  CAS  Google Scholar 

  19. Baroli, I. & Niyogi, K. K. Molecular genetics of xanthophyll-dependent photoprotection in green algae and plants. Phil. Trans. R. Soc. Lond. B 355, 1385–1394 (2000)

    Article  CAS  Google Scholar 

  20. Vink, M. et al. Light-modulated exposure of the light-harvesting complex II (LHCII) to protein kinase(s) and state transition in Chlamydomonas reinhardtii xanthophyll mutants. Biochemistry 43, 7824–7833 (2004)

    Article  CAS  Google Scholar 

  21. Rintamaki, E., Martinsuo, P., Pursiheimo, S. & Aro, E. M. Cooperative regulation of light-harvesting complex II phosphorylation via the plastoquinol and ferredoxin-thioredoxin system in chloroplasts. Proc. Natl Acad. Sci. USA 97, 11644–11649 (2000)

    Article  ADS  CAS  Google Scholar 

  22. Lunde, C., Jensen, P. E., Haldrup, A., Knoetzel, J. & Scheller, H. V. The PSI-H subunit of photosystem I is essential for state transitions in plant photosynthesis. Nature 408, 613–615 (2000)

    Article  ADS  CAS  Google Scholar 

  23. Lunde, C. et al. Plants impaired in state transitions can to a large degree compensate for their defect. Plant Cell Physiol. 44, 44–54 (2003)

    Article  CAS  Google Scholar 

  24. Pfannschmidt, T., Nilsson, A. & Allen, J. F. Photosynthetic control of chloroplast gene expression. Nature 397, 625–628 (1999)

    Article  ADS  CAS  Google Scholar 

  25. Delosme, R., Olive, J. & Wollman, F. A. Changes in light energy distribution upon state transitions: an in vivo photoacoustic study of the wild type and photosynthesis mutants from Chlamydomonas reinhardtii. Biochim. Biophys. Acta 1273, 150–158 (1996)

    Article  Google Scholar 

  26. Li, X. P., Gilmore, A. M. & Niyogi, K. K. Molecular and global time-resolved analysis of a psbS gene dosage effect on pH- and xanthophyll cycle-dependent nonphotochemical quenching in photosystem II. J. Biol. Chem. 277, 33590–33597 (2002)

    Article  CAS  Google Scholar 

  27. Robinson, H. H. & Yocum, C. F. Cyclic photophosphorylation reactions catalyzed by ferredoxin, methyl viologen and anthraquinone sulfonate. Use of photochemical reactions to optimize redox poising. Biochim. Biophys. Acta 590, 97–106 (1980)

    Article  CAS  Google Scholar 

  28. Weis, E. Chlorophyll fluorescence at 77K in intact leaves: Characterization of a technique to eliminate artifacts related to self-absorption. Photosynth. Res. 6, 73–86 (1985)

    Article  CAS  Google Scholar 

  29. Zer, H. et al. Light affects the accessibility of the thylakoid light harvesting complex II (LHCII) phosphorylation site to the membrane protein kinase(s). Biochemistry 42, 728–738 (2003)

    Article  CAS  Google Scholar 

  30. Havaux, M., Dall'Osto, L., Cuine, S., Giuliano, G. & Bassi, R. The effect of zeaxanthin as the only xanthophyll on the structure and function of the photosynthetic apparatus in Arabidopsis thaliana. J. Biol. Chem. 279, 13878–13888 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Roggli for drawings; C. Niyogi and M. Havaux for the npq4 mutant; C. Fankhauser for transformation vectors and help with Arabidopsis; C. Bréhélin and F. Kessler (Plant Survival NCCR) for help with the protoplast transformation experiments; B. Genty and M. Goldschmidt-Clermont for discussions; M. Péan, A. Beyly and the GRAP team (CEA Cadarache) for support in growing plants under controlled conditions; and B. Delessert for assistance in the phytotron. F.B. was supported by a long-term EMBO fellowship. This work was supported by a grant from the Swiss National Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-David Rochaix.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure 1

Locations of T-DNA insertions in STN7 (At1g68830) and STN8 (At5g01020) and RT-PCR of STN7 and STN8 transcripts in the wild-type (Col-0), stn7, stn8 and in the rescued stn7-1R, stn7-4R, stn8-13 and stn8-69 lines. (PDF 134 kb)

Supplementary Figure 2

The STN7 kinase is localized in chloroplast membranes. (PDF 577 kb)

Supplementary Figure 3

Immunoblot analysis of proteins of the photosynthetic apparatus. (PDF 137 kb)

Supplementary Data

This file contains additional Methods, references and legends for Supplementary Figures 1-3. (DOC 66 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellafiore, S., Barneche, F., Peltier, G. et al. State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature 433, 892–895 (2005). https://doi.org/10.1038/nature03286

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03286

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing