[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Presynaptic induction of heterosynaptic associative plasticity in the mammalian brain

Abstract

The induction of associative synaptic plasticity in the mammalian central nervous system classically depends on coincident presynaptic and postsynaptic activity1,2. According to this principle, associative homosynaptic long-term potentiation (LTP) of excitatory synaptic transmission can be induced only if synaptic release occurs during postsynaptic depolarization1,2. In contrast, heterosynaptic plasticity in mammals is considered to rely on activity-independent, non-associative processes3,4,5,6,7,8. Here we describe a novel mechanism underlying the induction of associative LTP in the lateral amygdala (LA). Simultaneous activation of converging cortical and thalamic afferents specifically induced associative, N-methyl-d-aspartate (NMDA)-receptor-dependent LTP at cortical, but not at thalamic, inputs. Surprisingly, the induction of associative LTP at cortical inputs was completely independent of postsynaptic activity, including depolarization, postsynaptic NMDA receptor activation or an increase in postsynaptic Ca2+ concentration, and did not require network activity. LTP expression was mediated by a persistent increase in the presynaptic probability of release at cortical afferents. Our study shows the presynaptic induction and expression of heterosynaptic and associative synaptic plasticity on simultaneous activity of converging afferents. Our data indicate that input specificity of associative LTP can be determined exclusively by presynaptic properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Induction of LTPHA at cortical, but not at thalamic, afferent synapses by simultaneous Poisson-train stimulation of thalamic and cortical afferents.
Figure 2: Induction of LTPHA does not depend on postsynaptic activity, but is dependent on NMDA receptor activation and Ca2+.
Figure 3: Network activity is not required for the induction of LTPHA.
Figure 4: Heterosynaptic, NMDA-receptor-dependent increase of release probability at cortical afferents after stimulation of thalamic afferents.

Similar content being viewed by others

References

  1. Gustafsson, B. & Wigström, H. Basic features of long-term potentiation in the hippocampus. Semin. Neurosci. 2, 321–333 (1990)

    Google Scholar 

  2. Bliss, T. V. P. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993)

    Article  ADS  CAS  Google Scholar 

  3. Bailey, C. H., Giustetto, M., Huang, Y. Y., Hawkins, R. D. & Kandel, E. R. Is heterosynaptic modulation essential for stabilizing Hebbian plasticity and memory? Nature Rev. Neurosci. 1, 11–20 (2000)

    Article  CAS  Google Scholar 

  4. Artola, A. & Singer, W. Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation. Trends Neurosci. 16, 480–487 (1993)

    Article  CAS  Google Scholar 

  5. Scanziani, M., Malenka, R. C. & Nicoll, R. A. Role of intercellular interactions in heterosynaptic long-term depression. Nature 380, 446–450 (1996)

    Article  ADS  CAS  Google Scholar 

  6. Tsukamoto, M. et al. Mossy fibre synaptic NMDA receptors trigger non-Hebbian long-term potentiation at entorhino-CA3 synapses in the rat. J. Physiol. (Lond.) 546, 665–675 (2003)

    Article  CAS  Google Scholar 

  7. Royer, S. & Paré, D. Conservation of total synaptic weight through balanced synaptic depression and potentiation. Nature 422, 518–522 (2003)

    Article  ADS  CAS  Google Scholar 

  8. Nishiyama, M., Hong, K., Mikoshiba, K., Poo, M. M. & Kato, K. Calcium stores regulate the polarity and input-specificity of synaptic modification. Nature 408, 584–588 (2000)

    Article  ADS  CAS  Google Scholar 

  9. LeDoux, J. E. Emotion circuits in the brain. Annu. Rev. Neurosci. 23, 155–184 (2000)

    Article  CAS  Google Scholar 

  10. Weisskopf, M. G., Bauer, E. P. & LeDoux, J. E. L-type voltage gated calcium channels mediate NMDA-independent associative long-term potentiation at thalamic input synapses to the amygdala. J. Neurosci. 19, 10512–10519 (1999)

    Article  CAS  Google Scholar 

  11. Bauer, E. P., Schafe, G. E. & LeDoux, J. E. NMDA receptors and L-type voltage gated calcium channels contribute to long-term potentiation and different components of fear memory formation in the lateral amygdala. J. Neurosci. 22, 5239–5249 (2002)

    Article  CAS  Google Scholar 

  12. Huang, Y. Y. & Kandel, E. R. Postsynaptic induction and PKA-dependent expression of LTP in the lateral amygdala. Neuron 21, 169–178 (1998)

    Article  CAS  Google Scholar 

  13. Quirk, G. J., Armony, J. L. & LeDoux, J. E. Fear conditioning enhances different temporal components of tone-evoked spike trains in auditory cortex and lateral amygdala. Neuron 19, 613–624 (1997)

    Article  CAS  Google Scholar 

  14. Rosenkranz, J. A. & Grace, A. A. Dopamine-mediated modulation of odour-evoked amygdala potentials during pavlovian conditioning. Nature 417, 282–287 (2002)

    Article  ADS  CAS  Google Scholar 

  15. Berretta, N. & Jones, R. S. Tonic facilitation of glutamate release by presynaptic N-methyl-d-aspartate autoreceptors in the entorhinal cortex. Neuroscience 75, 339–344 (1996)

    Article  CAS  Google Scholar 

  16. Lang, E. J. & Paré, D. Similar inhibitory processes dominate the responses of cat lateral amygdaloid projection neurons to their various afferents. J. Neurophysiol. 77, 341–352 (1997)

    Article  CAS  Google Scholar 

  17. Szinyei, C., Heinbockel, T., Montagne, J. & Pape, H. C. Putative cortical and thalamic inputs elicit convergent excitation in a population of GABAergic interneurons of the lateral amygdala. J. Neurosci. 20, 8909–8915 (2000)

    Article  CAS  Google Scholar 

  18. Abraham, W. C. & Wickens, J. R. Heterosynaptic long-term depression is facilitated by blockade of inhibition in area CA1 of the hippocampus. Brain Res. 546, 336–340 (1991)

    Article  CAS  Google Scholar 

  19. Lang, E. J. & Paré, D. Synaptic responsiveness of interneurons of the cat lateral amygdaloid nucleus. Neuroscience 83, 877–889 (1998)

    Article  CAS  Google Scholar 

  20. Bissière, S., Humeau, Y. & Lüthi, A. Dopamine gates LTP induction in lateral amygdala by suppressing feedforward inhibition. Nature Neurosci. 6, 587–592 (2003)

    Article  Google Scholar 

  21. McDonald, A. J. & Mascagni, F. Immunohistochemical localization of the β2 and β3 subunits of the GABAA receptor in the basolateral amygdala of the rat and monkey. Neuroscience 75, 407–419 (1996)

    Article  CAS  Google Scholar 

  22. Farb, C. R., Aoki, C. & LeDoux, J. E. Differential localization of NMDA and AMPA receptor subunits in the lateral and basal nuclei of the amygdala: a light and electron microscopic study. J. Comp. Neurol. 362, 86–108 (1995)

    Article  CAS  Google Scholar 

  23. Gracy, K. N. & Pickel, V. M. Ultrastructural localization of NMDAR1 glutamate receptor immunoreactivity in the extended amygdala. J. Comp. Neurol. 362, 71–85 (1995)

    Article  CAS  Google Scholar 

  24. Farb, C. R. & LeDoux, J. E. Afferents from the rat temporal cortex synapse on lateral amygdala neurons that express AMPA and NMDA receptors. Synapse 33, 218–229 (1999)

    Article  CAS  Google Scholar 

  25. Hess, G., Kuhnt, U. & Voronin, L. L. Quantal analysis of paired-pulse facilitation in guinea pig hippocampal slices. Neurosci. Lett. 77, 187–192 (1987)

    Article  CAS  Google Scholar 

  26. Tsvetkov, E., Carlezon, W. A., Benes, F. M., Kandel, E. R. & Bolshakov, V. Y. Fear conditioning occludes LTP-induced presynaptic enhancement of synaptic transmission in the cortical pathway to the lateral amygdala. Neuron 34, 289–300 (2002)

    Article  CAS  Google Scholar 

  27. Humeau, Y., Popoff, M. R., Kojima, H., Doussau, F. & Poulain, B. Rac GTPase plays an essential role in exocytosis by controlling the fusion competence of release sites. J. Neurosci. 22, 7968–7981 (2002)

    Article  CAS  Google Scholar 

  28. Doyère, V., Schafe, G. E., Sigurdsson, T. & LeDoux, J. E. Long-term potentiation in freely moving rats reveals asymmetries in thalamic and cortical inputs to the lateral amygdala. Eur. J. Neurosci. 17, 2703–2715 (2003)

    Article  Google Scholar 

  29. Markram, H., Lübke, J., Frotscher, M. & Sakman, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 75, 213–215 (1997)

    Article  Google Scholar 

  30. Blair, H. T., Schafe, G. E., Bauer, E. P., Rodrigues, S. M. & LeDoux, J. E. Synaptic plasticity in the lateral amygdala: a cellular hypothesis of fear conditioning. Learn. Mem. 8, 229–242 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Gähwiler, C. Heuss, A. Matus, B. Poulain and E. Seifritz for discussions and comments on the manuscript. This work was supported by the Borderline Personality Disorder Research Foundation, the Swiss National Science Foundation and the Novartis Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Lüthi.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Humeau, Y., Shaban, H., Bissière, S. et al. Presynaptic induction of heterosynaptic associative plasticity in the mammalian brain. Nature 426, 841–845 (2003). https://doi.org/10.1038/nature02194

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02194

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing