[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The Wnt/β-catenin pathway regulates cardiac valve formation

Abstract

Truncation of the tumour suppressor adenomatous polyposis coli (Apc) constitutively activates the Wnt/β-catenin signalling pathway1. Apc has a role in development: for example, embryos of mice with truncated Apc do not complete gastrulation2. To understand this role more fully, we examined the effect of truncated Apc on zebrafish development. Here we show that, in contrast to mice, zebrafish do complete gastrulation. However, mutant hearts fail to loop and form excessive endocardial cushions. Conversely, overexpression of Apc or Dickkopf 1 (Dkk1), a secreted Wnt inhibitor3, blocks cushion formation. In wild-type hearts, nuclear β-catenin, the hallmark of activated canonical Wnt signalling4, accumulates only in valve-forming cells, where it can activate a Tcf reporter. In mutant hearts, all cells display nuclear β-catenin and Tcf reporter activity, while valve markers are markedly upregulated. Concomitantly, proliferation and epithelial–mesenchymal transition, normally restricted to endocardial cushions, occur throughout the endocardium. Our findings identify a novel role for Wnt/β-catenin signalling in determining endocardial cell fate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mutation of apc results in heart malformation.
Figure 2: Wnt/β-catenin signalling regulates endocardial cushion formation.
Figure 3: Deregulated Wnt/β-catenin signalling and proliferation in apc mutant hearts.
Figure 4: Expression of valve markers is upregulated and expanded in apc hearts.

Similar content being viewed by others

References

  1. Fodde, R., Smits, R. & Clevers, H. APC, signal transduction and genetic instability in colorectal cancer. Nature Rev. Cancer 1, 55–67 (2001)

    Article  CAS  Google Scholar 

  2. Fodde, R. et al. A targeted chain-termination mutation in the mouse Apc gene results in multiple intestinal tumors. Proc. Natl Acad. Sci. USA 91, 8969–8973 (1994)

    Article  ADS  CAS  Google Scholar 

  3. Mao, B. et al. LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature 411, 321–325 (2001)

    Article  ADS  CAS  Google Scholar 

  4. van de Wetering, M. et al. The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111, 241–250 (2002)

    Article  CAS  Google Scholar 

  5. Wienholds, E., Schulte-Merker, S., Walderich, B. & Plasterk, R. H. Target-selected inactivation of the zebrafish rag1 gene. Science 297, 99–102 (2002)

    Article  ADS  CAS  Google Scholar 

  6. Hashimoto, H. et al. Zebrafish Dkk1 functions in forebrain specification and axial mesendoderm formation. Dev. Biol. 217, 138–152 (2000)

    Article  CAS  Google Scholar 

  7. Dorsky, R. I., Sheldahl, L. C. & Moon, R. T. A transgenic Lef1/beta-catenin-dependent reporter is expressed in spatially restricted domains throughout zebrafish development. Dev. Biol. 241, 229–237 (2002)

    Article  CAS  Google Scholar 

  8. Heisenberg, C. P. et al. A mutation in the Gsk3-binding domain of zebrafish Masterblind/Axin1 leads to a fate transformation of telencephalon and eyes to diencephalon. Genes Dev. 15, 1427–1434 (2001)

    Article  CAS  Google Scholar 

  9. van de Water, S. et al. Ectopic Wnt signal determines the eyeless phenotype of zebrafish masterblind mutant. Development 128, 3877–3888 (2001)

    CAS  PubMed  Google Scholar 

  10. Walsh, E. C. & Stainier, D. Y. UDP-glucose dehydrogenase required for cardiac valve formation in zebrafish. Science 293, 1670–1673 (2001)

    Article  ADS  CAS  Google Scholar 

  11. Kielman, M. F. et al. Apc modulates embryonic stem-cell differentiation by controlling the dosage of beta-catenin signaling. Nature Genet. 32, 594–605 (2002)

    Article  CAS  Google Scholar 

  12. Willert, J., Epping, M., Pollack, J. R., Brown, P. O. & Nusse, R. A transcriptional response to Wnt protein in human embryonic carcinoma cells. BMC Dev. Biol. 2, 8 (2002)

    Article  Google Scholar 

  13. Brown, C. B., Boyer, A. S., Runyan, R. B. & Barnett, J. V. Requirement of type III TGF-beta receptor for endocardial cell transformation in the heart. Science 283, 2080–2082 (1999)

    Article  ADS  CAS  Google Scholar 

  14. Kim, R. Y., Robertson, E. J. & Solloway, M. J. Bmp6 and Bmp7 are required for cushion formation and septation in the developing mouse heart. Dev. Biol. 235, 449–466 (2001)

    Article  CAS  Google Scholar 

  15. Iwamoto, R. Heparin-binding EGF-like growth factor and ErbB signaling is essential for heart function. Proc. Natl Acad. Sci. USA (2003)

  16. Mjaatvedt, C. H., Yamamura, H., Capehart, A. A., Turner, D. & Markwald, R. R. The Cspg2 gene, disrupted in the hdf mutant, is required for right cardiac chamber and endocardial cushion formation. Dev. Biol. 202, 56–66 (1998)

    Article  CAS  Google Scholar 

  17. Camenisch, T. D. et al. Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J. Clin. Invest. 106, 349–360 (2000)

    Article  CAS  Google Scholar 

  18. Hacker, U., Lin, X. & Perrimon, N. The Drosophila sugarless gene modulates Wingless signaling and encodes an enzyme involved in polysaccharide biosynthesis. Development 124, 3565–3573 (1997)

    CAS  PubMed  Google Scholar 

  19. Tzahor, E. & Lassar, A. B. Wnt signals from the neural tube block ectopic cardiogenesis. Genes Dev. 15, 255–260 (2001)

    Article  CAS  Google Scholar 

  20. Lickert, H. et al. Formation of multiple hearts in mice following deletion of beta-catenin in the embryonic endoderm. Dev. Cell 3, 171–181 (2002)

    Article  CAS  Google Scholar 

  21. Kioussi, C. et al. Identification of a Wnt/Dvl/beta-Catenin → Pitx2 pathway mediating cell-type-specific proliferation during development. Cell 111, 673–685 (2002)

    Article  CAS  Google Scholar 

  22. Westerfield, M. The Zebrafish Book (Univ. Oregon Press, Salem, Oregon, 1995)

    Google Scholar 

  23. Colbert, T. et al. High-throughput screening for induced point mutations. Plant Physiol. 126, 480–484 (2001)

    Article  CAS  Google Scholar 

  24. Miller, J. R. & Moon, R. T. Analysis of the signaling activities of localization mutants of beta-catenin during axis specification in Xenopus. J. Cell Biol. 139, 229–243 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Dorsky and R. Moon for TOPdGFP fish and the APC–GFP construct; M. Kosters and J. Mudde for library screening; and J. Bakkers, M. Morkel and W. Birchmeier for sharing reagents and observations before publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Clevers.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hurlstone, A., Haramis, AP., Wienholds, E. et al. The Wnt/β-catenin pathway regulates cardiac valve formation. Nature 425, 633–637 (2003). https://doi.org/10.1038/nature02028

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02028

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing