[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the bacterial flagellar hook and implication for the molecular universal joint mechanism

Abstract

The bacterial flagellum is a motile organelle, and the flagellar hook is a short, highly curved tubular structure that connects the flagellar motor to the long filament acting as a helical propeller. The hook is made of about 120 copies of a single protein, FlgE, and its function as a nano-sized universal joint is essential for dynamic and efficient bacterial motility and taxis. It transmits the motor torque to the helical propeller over a wide range of its orientation for swimming and tumbling. Here we report a partial atomic model of the hook obtained by X-ray crystallography of FlgE31, a major proteolytic fragment of FlgE lacking unfolded terminal regions, and by electron cryomicroscopy and three-dimensional helical image reconstruction of the hook. The model reveals the intricate molecular interactions and a plausible switching mechanism for the hook to be flexible in bending but rigid against twisting for its universal joint function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stereo view of the Cα backbone trace of FlgE31.
Figure 2: Docking of the atomic model of FlgE31 into the outer two domains of the hook.
Figure 3: Stereo view of the atomic model of the D1–D2 part of the straight hook.
Figure 4: Magnified views of intermolecular interactions along various helical lines of the straight hook.
Figure 5: Atomic model of the supercoiled hook.
Figure 6: Simulated extension and compression of hook protofilament.

Similar content being viewed by others

References

  1. Macnab, R. M. How bacteria assemble flagella. Annu. Rev. Microbiol. 57, 77–100 (2003)

    Article  CAS  Google Scholar 

  2. Berg, H. C. The rotary motor of bacterial flagella. Annu. Rev. Biochem. 72, 19–54 (2003)

    Article  CAS  Google Scholar 

  3. Kojima, S. & Blair, D. The bacterial flagellar motor: structure and function of a complex molecular machine. Int. Rev. Cytol. 233, 93–134 (2004)

    Article  CAS  Google Scholar 

  4. DePamphilis, M. L. & Adler, J. Purification of intact flagella from Escherichia coli and Bacillus subtilis. J. Bacteriol. 105, 376–383 (1971)

    CAS  PubMed  PubMed Central  Google Scholar 

  5. DePamphilis, M. L. & Adler, J. Fine structure and isolation of the hook–basal body complex of flagella from Escherichia coli and Bacillus subtilis. J. Bacteriol. 105, 384–395 (1971)

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Berg, H. C. & Anderson, R. A. Bacteria swim by rotating their flagellar filaments. Nature 245, 380–382 (1973)

    Article  ADS  CAS  Google Scholar 

  7. Silverman, M. & Simon, M. Flagellar rotation and the mechanism of bacterial motility. Nature 249, 73–74 (1974)

    Article  ADS  CAS  Google Scholar 

  8. Namba, K. & Vonderviszt, F. Molecular architecture of bacterial flagellum. Q. Rev. Biophys. 30, 1–65 (1997)

    Article  CAS  Google Scholar 

  9. Macnab, R. M. & Ornston, M. K. Normal-to-curly flagellar transitions and their role in bacterial tumbling. Stabilization of an alternative quaternary structure by mechanical force. J. Mol. Biol. 112, 1–30 (1977)

    Article  CAS  Google Scholar 

  10. Turner, L., Ryu, W. S. & Berg, H. C. Real-time imaging of fluorescent flagellar filaments. J. Bacteriol. 182, 2793–2801 (2000)

    Article  CAS  Google Scholar 

  11. Wagenknecht, T., DeRosier, D. J., Aizawa, S.-I. & Macnab, R. M. Flagellar hook structures of Caulobacter and Salmonella and their relationship to filament structure. J. Mol. Biol. 162, 69–87 (1982)

    Article  CAS  Google Scholar 

  12. Kagawa, H., Aizawa, S. I. & Asakura, S. Transformations in isolated polyhooks. J. Mol. Biol. 129, 333–336 (1979)

    Article  CAS  Google Scholar 

  13. Williams, A. W. et al. Mutation in fliK and flhB affecting flagellar hook and filament assembly in Salmonella typhimurium. J. Bacteriol. 178, 2960–2970 (1996)

    Article  CAS  Google Scholar 

  14. Hirano, T., Yamaguchi, S., Oosawa, K. & Aizawa, S.-I. Roles of FliK and FlhB in the determination of flagellar hook length in Salmonella typhimurium. J. Bacteriol. 176, 5439–5449 (1994)

    Article  CAS  Google Scholar 

  15. Wagenknecht, T., DeRosier, D. J., Shapiro, L. & Weissborn, A. Three-dimensional reconstruction of the flagellar hook from Caulobacter crescentus. J. Mol. Biol. 151, 439–465 (1981)

    Article  CAS  Google Scholar 

  16. Kutsukake, K., Suzuki, T., Yamaguchi, S. & Iino, T. Role of gene flaFV on flagellar hook formation in Salmonella typhimurium. J. Bacteriol. 140, 267–275 (1979)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Aizawa, S. & Maeda, Y. A new method for determination of parity in optical diffraction patterns from the structures with helical symmetry. J. Mol. Biol. 137, 437–442 (1980)

    Article  CAS  Google Scholar 

  18. Kato, S., Okamoto, M. & Asakura, S. Polymorphic transition of the flagellar polyhook from Escherichia coli and Salmonella typhimurium. J. Mol. Biol. 173, 463–476 (1984)

    Article  CAS  Google Scholar 

  19. Morgan, D. G., Macnab, R. M., Francis, N. R. & DeRosier, D. J. Domain organization of the subunit of the Salmonella typhimurium flagellar hook. J. Mol. Biol. 229, 79–84 (1993)

    Article  CAS  Google Scholar 

  20. Homma, M., DeRosier, D. J. & Macnab, R. M. Flagellar hook and hook-associated proteins of Salmonella typhimurium and their relationship to other axial components of the flagellum. J. Mol. Biol. 213, 819–832 (1990)

    Article  CAS  Google Scholar 

  21. Samatey, F. A. et al. Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature 410, 331–337 (2001)

    Article  ADS  CAS  Google Scholar 

  22. Samatey, F. A., Imada, K., Vonderviszt, F., Shirakihara, Y. & Namba, K. Crystallization of the F41 fragment of flagellin and data collection from extremely thin crystals. J. Struct. Biol. 132, 106–111 (2000)

    Article  CAS  Google Scholar 

  23. Vonderviszt, F., Ishima, R., Akasaka, K. & Aizawa, S. Terminal disorder: a common structural feature of the axial proteins of bacterial flagellum? J. Mol. Biol. 226, 575–579 (1992)

    Article  CAS  Google Scholar 

  24. Vonderviszt, F., Zavodszky, P., Ishimura, M., Uedaira, H. & Namba, K. Structural organization and assembly of flagellar hook protein from Salmonella typhimurium. J. Mol. Biol. 251, 520–532 (1995)

    Article  CAS  Google Scholar 

  25. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993)

    Article  CAS  Google Scholar 

  26. Yonekura, K., Maki-Yonekura, S. & Namba, K. Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature 424, 643–650 (2003)

    Article  ADS  CAS  Google Scholar 

  27. Chen, J. Z., Fürst, J., Chapman, M. S. & Grigorieff, N. Low resolution structure refinement in electron microscopy. J. Struct. Biol. 144, 144–151 (2003)

    Article  Google Scholar 

  28. Hasegawa, K., Yamashita, I. & Namba, K. Quasi- and nonequivalence in the structure of bacterial flagellar filament. Biophys. J. 74, 569–575 (1998)

    Article  ADS  CAS  Google Scholar 

  29. Lowe, G., Meister, M. & Berg, H. C. Rapid rotation of flagellar bundles in swimming bacteria. Nature 325, 637–640 (1987)

    Article  ADS  Google Scholar 

  30. Kudo, S., Magariyama, Y. & Aizawa, S. Abrupt changes in flagellar rotation observed by laser dark-field microscopy. Nature 346, 677–680 (1990)

    Article  ADS  CAS  Google Scholar 

  31. Yamashita, I. et al. Structure and switching of bacterial flagellar filaments studied by X-ray fiber diffraction. Nature Struct. Biol. 5, 125–132 (1998)

    Article  CAS  Google Scholar 

  32. Fahrner, K. A., Block, S. M., Krishnaswamy, S., Parkinson, J. S. & Berg, H. C. A mutant hook-associated protein (HAP3) facilitates torsionally induced transformations of the flagellar filament of Escherichia coli. J. Mol. Biol. 238, 173–186 (1994)

    Article  CAS  Google Scholar 

  33. Samatey, F. A., Matsunami, H., Imada, K., Nagashima, S. & Namba, K. Crystallization of a core fragment of the hook protein FlgE. Acta Crystallogr. D (in the press)

  34. Otwinowski, Z. & Minor, W. Processing of X-ray Diffraction Data Collected in Oscillation Mode (Academic, New York, 1997)

    Book  Google Scholar 

  35. Powell, H. R. The Rossmann Fourier autoindexing algorithm in MOSFLM. Acta Crystallogr. D 55, 1690–1695 (1999)

    Article  CAS  Google Scholar 

  36. Collaborative Computational Project No. 4, The CCP4 suite: Programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

    Article  Google Scholar 

  37. Terwilliger, T. C. & Berendzen, J. Automated structure solution for MIR and MAD. Acta Crystallogr. D 55, 849–861 (1999)

    Article  CAS  Google Scholar 

  38. Terwilliger, T. C. Maximum-likelihood density modification. Acta Crystallogr. D 56, 965–972 (2000)

    Article  CAS  Google Scholar 

  39. Perrakis, A., Morris, R. & Lamzin, V. S. Automated protein model building combined with iterative structure refinement. Nature Struct. Biol. 6, 458–463 (1999)

    Article  CAS  Google Scholar 

  40. Jones, T. A., Zhou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

  41. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997)

    Article  CAS  Google Scholar 

  42. Francis, N. R., Sosinsky, G. E., Thomas, D. & DeRosier, D. J. Isolation, characterization and structure of bacterial flagellar motors containing the switch complex. J. Mol. Biol. 235, 1261–1270 (1994)

    Article  CAS  Google Scholar 

  43. Morgan, D. G., Owen, C., Melanson, L. A. & DeRosier, D. J. Structure of bacterial flagellar filaments at 11 Å resolution: packing of the alpha-helices. J. Mol. Biol. 249, 88–110 (1995)

    Article  CAS  Google Scholar 

  44. Case, D. A., et al. AMBER7. (Univ. California, San Francisco, California, 2002)

  45. Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991)

    Article  Google Scholar 

  46. Merritt, E. A. & Bacon, D. J. Raster3D: Photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. M. Macnab, who passed away suddenly in September 2003, for his invaluable discussion on the structure and function of the flagellar hook; the staff members of beamline ID29 at the European Synchrotron Radiation Facility (ESRF) in Grenoble and beamline BL41XU at the 8 GeV Super Photon ring (SPring-8) in Harima for their help for the data collection; and F. Oosawa and S. Asakura for continuous support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiichi Namba.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Table 1

Regions involved in intersubunit interactions, listing amino acid residues of FlgE31 involved in the interactions along the 11-start, 5-start and 6-start directions of the hook structure. (DOC 35 kb)

Supplementary Table 2

Summary of refinement statistics of the X-ray crystal structure analysis of FlgE31. (DOC 41 kb)

Supplementary Video 1

Rolling rotation (or “smoke-ring” rotation) of an atomic model of coiled hook during its function as a universal joint. The atomic model is the one shown in Figure 5. During the rolling rotation, each protofilament goes through extension and compression with every revolution. (MOV 13182 kb)

Supplementary Video 2

Possible conformational changes of the protofilaments and subunits on the longitudinal section of the tube wall of the coiled hook during its rolling rotation (four protofilaments have been removed). The inner surface of the layer made of D1 domains can also be seen. (MOV 11056 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samatey, F., Matsunami, H., Imada, K. et al. Structure of the bacterial flagellar hook and implication for the molecular universal joint mechanism. Nature 431, 1062–1068 (2004). https://doi.org/10.1038/nature02997

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02997

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing