[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

What future for quantum dot-based light emitters?

Synthesis of semiconductor colloidal quantum dots by low-cost, solution-based methods has produced an abundance of basic science. Can these materials be transformed to high-performance light emitters to disrupt established photonics technologies, particularly semiconductor lasers?

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical gain spectroscopy at lowest exciton resonance in red II–VI quantum dot films.
Figure 2: Semiconductor nanoplatelets.
Figure 3: Red, green and blue surface-emitting CdSe–CdZnSe distributed feedback (DFB) colloidal quantum dot lasers.
Figure 4: Proposed energy-level scheme for a composite electrical injector interface in a perovskite LED, combining inorganic and organic thin films for electron and hole transport, respectively.

References

  1. Shimizu, H. et al. Jpn. J. Appl. Phys. 44, L1103–L1104 (2005).

    Article  CAS  Google Scholar 

  2. Telford, M. III-Vs Rev. 17, 28–31 (2004).

    Google Scholar 

  3. Steckel, J. S., Ho, J. & Coe-Sullivan, S. Photon. Spectra http://go.nature.com/mMfCaf (September 2014).

  4. Jain, K. K. Handbook of Biomarkers (Humana Press, 2012).

  5. Klimov, V. I., Mikhailovsky, A. A., McBranch, D. W., Leatherdale, C. A. & Bawendi, M. G. Science 287, 1011–1013 (2000).

    Article  CAS  Google Scholar 

  6. Chan, Y., Caruge, J. M., Snee, P. T. & Bawendi, M. G. Appl. Phys. Lett. 85, 2460–2462 (2004).

    Article  CAS  Google Scholar 

  7. Dang, C. et al. Nature Nanotech. 7, 335–339 (2012).

    Article  CAS  Google Scholar 

  8. Klimov, V. I. et al. Nature 447, 441–446 (2007).

    Article  CAS  Google Scholar 

  9. Dang, C. & Nurmikko, A. MRS Bull. 38, 737–742 (2013).

    Article  CAS  Google Scholar 

  10. Ithurria, S. et al. Nature Mater. 10, 936–941 (2011).

    Article  CAS  Google Scholar 

  11. Haase, M. A., Qiu, J., DePuydt, J. M. & Cheng, H. Appl. Phys. Lett. 59, 1272–1274 (1991).

    Article  CAS  Google Scholar 

  12. Jeon, H. et al. Appl. Phys. Lett. 59, 3619–3621 (1991).

    Article  CAS  Google Scholar 

  13. Chunxing, S. et al. Nano Lett. 14, 2772–2777 (2014).

    Article  Google Scholar 

  14. Guzelturk, B., Kelestemur, Y., Olutas, M., Delikanli, S. & Demir, H. V. ACS Nano 8, 6599–6605 (2014).

    Article  CAS  Google Scholar 

  15. Grim, J. Q. et al. Nature Nanotech. 9, 891–895 (2014).

    Article  CAS  Google Scholar 

  16. Xing, G. et al. Nature Mater. 13, 476–480 (2014).

    Article  CAS  Google Scholar 

  17. Deschler, F. J. Phys. Chem. Lett. 5, 1421–1426 (2014).

    Article  CAS  Google Scholar 

  18. Yakunin, S. Nature Commun. 6, 8056 (2015).

    Article  CAS  Google Scholar 

  19. Zhu, H. et al. Nature Mater. 14, 636–642 (2015).

    Article  CAS  Google Scholar 

  20. Zhang, Q., Ha, S. T., Liu, X., Sum, T. C. & Xiong, Q. Nano Lett. 14, 5995–6001 (2014).

    Article  CAS  Google Scholar 

  21. Dhanker, R. et al. Appl. Phys. Lett. 105, 151112 (2014).

    Article  Google Scholar 

  22. Sundar, V. C. et al. Adv. Mater. 16, 2137–2141 (2004).

    Article  CAS  Google Scholar 

  23. Chen, Y. J. et al. Appl. Phys. Lett. 99, 241103 (2011).

    Article  Google Scholar 

  24. Kwangdong, R. et al. Opt. Express 22, 18800–18806 (2014).

    Article  Google Scholar 

  25. Todescato, F. et al. Adv. Funct. Mater. 22, 337–344 (2012).

    Article  CAS  Google Scholar 

  26. Chen, S. et al. CLEO: 2015 OSA Tech. Digest SM2F.6 (2015).

  27. Sutherland, B. R., Hoogland, S., Adachi, M. M., Wong, C. T. & Sargent, E. H. ACS Nano 8, 10947–10952 (2014).

    Article  CAS  Google Scholar 

  28. Mashford, B. S. et al. Nature Photon. 7, 407–412 (2013).

    Article  CAS  Google Scholar 

  29. Dai, X. et al. Nature 515, 96–99 (2014).

    Article  CAS  Google Scholar 

  30. Yang, X. et al. ACS Nano 8, 8224–8231 (2014).

    Article  CAS  Google Scholar 

  31. Tan, Z.-K. et al. Nature Nanotech. 9, 687–692 (2014).

    Article  CAS  Google Scholar 

  32. Song, J. et al. Adv. Mater. 27, 7162–7167 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arto Nurmikko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nurmikko, A. What future for quantum dot-based light emitters?. Nature Nanotech 10, 1001–1004 (2015). https://doi.org/10.1038/nnano.2015.288

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.288

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing