[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A multifunctional core–shell nanoparticle for dendritic cell-based cancer immunotherapy

Abstract

Dendritic cell-based cancer immunotherapy requires tumour antigens to be delivered efficiently into dendritic cells and their migration to be monitored in vivo. Nanoparticles have been explored as carriers for antigen delivery, but applications have been limited by the toxicity of the solvents used to make nanoparticles, and by the need to use transfection agents to deliver nanoparticles into cells. Here we show that an iron oxide–zinc oxide core–shell nanoparticle can deliver carcinoembryonic antigen into dendritic cells while simultaneously acting as an imaging agent. The nanoparticle–antigen complex is efficiently taken up by dendritic cells within one hour and can be detected in vitro by confocal microscopy and in vivo by magnetic resonance imaging. Mice immunized with dendritic cells containing the nanoparticle–antigen complex showed enhanced tumour antigen specific T-cell responses, delayed tumour growth and better survival than controls.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of the Fe3O4–ZnO core–shell nanoparticle.
Figure 2: Immobilization of polypeptide on the nanoparticle.
Figure 3: Intracellular delivery of the nanoparticles into DCs.
Figure 4: In vitro and in vivo MRI of nanoparticle-labelled DCs.
Figure 5: Induction of CEA-specific immunity.
Figure 6: Tumour growth and survival of immunized mice.

Similar content being viewed by others

References

  1. Seong, S. Y. & Matzinger, P. Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nature Rev. Immunol. 4, 469–478 (2004).

    Article  CAS  Google Scholar 

  2. Palucka, A. K., Ueno, H., Fay, J. W. & Banchereau, J. Taming cancer by inducing immunity via dendritic cells. Immunol. Rev. 220, 129–150 (2007).

    Article  CAS  Google Scholar 

  3. Melief, C. J. Cancer immunotherapy by dendritic cells. Immunity 29, 372–383 (2008).

    Article  CAS  Google Scholar 

  4. Bae, M. Y., Cho, N. H. & Seong, S. Y. Protective anti-tumour immune responses by murine dendritic cells pulsed with recombinant Tat-carcinoembryonic antigen derived from Escherichia coli. Clin. Exp. Immunol. 157, 128–138 (2009).

    Article  CAS  Google Scholar 

  5. Figdor, C. G., de Vries, I. J., Lesterhuis, W. J. & Melief, C. J. Dendritic cell immunotherapy: mapping the way. Nature Med. 10, 475–480 (2004).

    Article  CAS  Google Scholar 

  6. De Vries, I. J. et al. Effective migration of antigen-pulsed dendritic cells to lymph nodes in melanoma patients is determined by their maturation state. Cancer Res. 63, 12–17 (2003).

    CAS  Google Scholar 

  7. Prince, H. M. et al. In vivo tracking of dendritic cells in patients with multiple myeloma. J. Immunother. 31, 166–179 (2008).

    Article  Google Scholar 

  8. de Vries, I. J. et al. Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nature Biotechnol. 23, 1407–1413 (2005).

    Article  CAS  Google Scholar 

  9. Dekaban, G. A. et al. Semiquantitation of mouse dendritic cell migration in vivo using cellular MRI. J. Immunother. 32, 240–251 (2009).

    Article  Google Scholar 

  10. Bulte, J. W. In vivo MRI cell tracking: clinical studies. Am. J. Roentgenol. 193, 314–325 (2009).

    Article  Google Scholar 

  11. Rogers, W. J., Meyer, C. H. & Kramer, C. M. Technology insight: in vivo cell tracking by use of MRI. Nature Clin. Practice 3, 554–562 (2006).

    CAS  Google Scholar 

  12. Martin, A. L., Bernas, L. M., Rutt, B. K., Foster, P. J. & Gillies, E. R. Enhanced cell uptake of superparamagnetic iron oxide nanoparticles functionalized with dendritic guanidines. Bioconjug. Chem. 19, 2375–2384 (2008).

    Article  CAS  Google Scholar 

  13. Sun, R. et al. Physical and biological characterization of superparamagnetic iron oxide- and ultrasmall superparamagnetic iron oxide-labeled cells: a comparison. Invest. Radiol. 40, 504–513 (2005).

    Article  Google Scholar 

  14. Kunzmann, A. et al. Efficient internalization of silica-coated iron oxide nanoparticles of different sizes by primary human macrophages and dendritic cells. Toxicol. Appl. Pharmacol. 253, 81–93 (2011).

    Article  CAS  Google Scholar 

  15. Chen, C. L. et al. A new nano-sized iron oxide particle with high sensitivity for cellular magnetic resonance imaging. Mol. Imag. Biol. http://dx.doi.org/10.1007/s11307-010-0430-x (2010).

  16. Gilboa, E. DC-based cancer vaccines. J. Clin. Invest. 117, 1195–1203 (2007).

    Article  CAS  Google Scholar 

  17. Nel, A. E. et al. Understanding biophysicochemical interactions at the nano–bio interface. Nature Mater. 8, 543–557 (2009).

    Article  CAS  Google Scholar 

  18. Sanvicens, N. & Marco, M. P. Multifunctional nanoparticles—properties and prospects for their use in human medicine. Trends Biotechnol. 26, 425–433 (2008).

    Article  CAS  Google Scholar 

  19. Sun, C., Lee, J. S. & Zhang, M. Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliv. Rev. 60, 1252–1265 (2008).

    Article  CAS  Google Scholar 

  20. Klippstein, R. & Pozo, D. Nanotechnology-based manipulation of dendritic cells for enhanced immunotherapy strategies. Nanomedicine 6, 523–529 (2010).

    Article  CAS  Google Scholar 

  21. Cruz, L. J. et al. Multimodal imaging of nanovaccine carriers targeted to human dendritic cells. Mol. Pharm. 8, 520–531 (2011).

    Article  CAS  Google Scholar 

  22. Mackay, P. S. et al. Multimodal imaging of dendritic cells using a novel hybrid magneto-optical nanoprobe. Nanomedicine 7, 489–496 (2011).

    Article  CAS  Google Scholar 

  23. Lim, Y. T. et al. Biocompatible polymer-nanoparticle-based bimodal imaging contrast agents for the labeling and tracking of dendritic cells. Small 4, 1640–1645 (2008).

    Article  CAS  Google Scholar 

  24. Chang, E., Thekkek, N., Yu, W. W., Colvin, V. L. & Drezek, R. Evaluation of quantum dot cytotoxicity based on intracellular uptake. Small 2, 1412–1417 (2006).

    Article  CAS  Google Scholar 

  25. Zhang, Z. et al. Induction of anti-tumor cytotoxic T cell responses through PLGA-nanoparticle mediated antigen delivery. Biomaterials 32, 3666–3678 (2011).

    Article  CAS  Google Scholar 

  26. Noh, Y. W., Jang, Y. S., Ahn, K. J., Lim, Y. T. & Chung, B. H. Simultaneous in vivo tracking of dendritic cells and priming of an antigen-specific immune response. Biomaterials 32, 6254–6263 (2011).

    Article  CAS  Google Scholar 

  27. Bilati, U., Allemann, E. & Doelker, E. Nanoprecipitation versus emulsion-based techniques for the encapsulation of proteins into biodegradable nanoparticles and process-related stability issues. AAPS PharmSciTech 6, E594–E604 (2005).

    Article  Google Scholar 

  28. Stivaktakis, N. et al. PLA and PLGA microspheres of beta-galactosidase: effect of formulation factors on protein antigenicity and immunogenicity. J. Biomed. Mater. Res. A 70, 139–148 (2004).

    Article  CAS  Google Scholar 

  29. Blank, F. et al. Biomedical nanoparticles modulate specific CD4(+) T cell stimulation by inhibition of antigen processing in dendritic cells. Nanotoxicology http://dx.doi.org/10.3109/17435390.2010.5141293 (2011).

  30. Wang, D., Rayani, S. & Marshall, J. L. Carcinoembryonic antigen as a vaccine target. Exp. Rev. Vaccines 7, 987–993 (2008).

    Article  CAS  Google Scholar 

  31. Bhattacharya-Chatterjee, M., Saha, A., Foon, K. A. & Chatterjee, S. K. Carcinoembryonic antigen transgenic mouse models for immunotherapy and development of cancer vaccines. Curr. Protoc. Immunol. 20, Unit 20 28 (2008).

  32. Liu, H. L., Sonn, C. H., Wu, J. H., Lee, K. M. & Kim, Y. K. Synthesis of streptavidin-FITC-conjugated core–shell Fe3O4–Au nanocrystals and their application for the purification of CD4+ lymphocytes. Biomaterials 29, 4003–4011 (2008).

    Article  CAS  Google Scholar 

  33. Millers, D., Grigorjeva, L., Lojkowski, W. & Strachowski, T. Luminescence of ZnO nanopowders. Radiat. Meas. 38, 589–591 (2004).

    Article  CAS  Google Scholar 

  34. Wu, Y. L., Tok, A. I. Y., Boey, F. Y. C., Zeng, X. T. & Zhang, X. H. Chemical synthesis of ZnO nanocrystals. IEEE Trans. Nanotechnol. 6, 497–503 (2006).

    Article  Google Scholar 

  35. Dong, L. et al. Preparation of ZnO colloids by aggregation of the nanocrystal subunits. J. Colloid Interface Sci. 283, 380–384 (2005).

    Article  CAS  Google Scholar 

  36. Sarikaya, M., Tamerler, C., Schwartz, D. T. & Baneyx, F. O. Materials assembly and formation using engineered polypeptides. Annu. Rev. Mater. Res. 34, 373–408 (2004).

    Article  CAS  Google Scholar 

  37. Kjaergaard, K., Sorensen, J. K., Schembri, M. A. & Klemm, P. Sequestration of zinc oxide by fimbrial designer chelators. Appl. Environ. Microbiol. 66, 10–14 (2000).

    Article  CAS  Google Scholar 

  38. Thai, C. K. et al. Identification and characterization of Cu(2)O- and ZnO-binding polypeptides by Escherichia coli cell surface display: toward an understanding of metal oxide binding. Biotechnol. Bioeng. 87, 129–137 (2004).

    Article  CAS  Google Scholar 

  39. Seker, U. O. & Demir, H. V. Material binding peptides for nanotechnology. Molecules 16, 1426–1451 (2011).

    Article  CAS  Google Scholar 

  40. Xia, T. et al. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2, 2121–2134 (2008).

    Article  CAS  Google Scholar 

  41. Mailander, V. & Landfester, K. Interaction of nanoparticles with cells. Biomacromolecules 10, 2379–2400 (2009).

    Article  Google Scholar 

  42. Baumjohann, D. et al. In vivo magnetic resonance imaging of dendritic cell migration into the draining lymph nodes of mice. Eur. J. Immunol. 36, 2544–2555 (2006).

    Article  CAS  Google Scholar 

  43. Raynal, I. et al. Macrophage endocytosis of superparamagnetic iron oxide nanoparticles: mechanisms and comparison of ferumoxides and ferumoxtran-10. Invest. Radiol. 39, 56–63 (2004).

    Article  CAS  Google Scholar 

  44. Fu, Y. S. et al. Stable aqueous dispersion of ZnO quantum dots with strong blue emission via simple solution route. J. Am. Chem. Soc. 129, 16029–16033 (2007).

    Article  CAS  Google Scholar 

  45. Sallusto, F., Cella, M., Danieli, C. & Lanzavecchia, A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J. Exp. Med. 182, 389–400 (1995).

    Article  CAS  Google Scholar 

  46. Long, C. M., van Laarhoven, H. W., Bulte, J. W. & Levitsky, H. I. Magnetovaccination as a novel method to assess and quantify dendritic cell tumor antigen capture and delivery to lymph nodes. Cancer Res. 69, 3180–3187 (2009).

    Article  CAS  Google Scholar 

  47. Saha, A. et al. Dendritic cells pulsed with an anti-idiotype antibody mimicking carcinoembryonic antigen (CEA) can reverse immunological tolerance to CEA and induce antitumor immunity in CEA transgenic mice. Cancer Res. 64, 4995–5003 (2004).

    Article  CAS  Google Scholar 

  48. Schneider, T. D. & Stephens, R. M. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res. 18, 6097–6100 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Pioneer Research Center Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2011-0001715). Y.K.K. was supported by the Leap Research Program through the National Research Foundation of Korea (2011-0016497) and the Industrial Core Technology Development Program funded by the Ministry of Knowledge Economy (10033183). S.Y.S. and N.H.C. were supported by a grant from the Innovative Research Institute of Cell Therapy funded by the Ministry of Health and Welfare (A062260). T.C.C. and J.H.M. were supported by Hi Seoul Science/Humanities Fellowship from Seoul Scholarship Foundation. The authors are grateful to N. Orazio for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

N-H.C., S-Y.S. and Y.K.K. conceived and designed the experiments. T-C.C., J.H.M., J.H.W., S.J.L., D.H.K., J-S.Y. and S.K. performed the experiments. N-H.C., S-Y.S. and Y.K.K. analysed the data and wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Young Keun Kim or Seung-Yong Seong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 880 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, NH., Cheong, TC., Min, J. et al. A multifunctional core–shell nanoparticle for dendritic cell-based cancer immunotherapy. Nature Nanotech 6, 675–682 (2011). https://doi.org/10.1038/nnano.2011.149

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.149

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing