[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain

Abstract

Establishing the cellular identity in vivo of adult multipotent neural progenitors is fundamental to understanding their biology. We used two transgenic strategies to determine the relative contribution of glial fibrillary acidic protein (GFAP)-expressing progenitors to constitutive neurogenesis in the adult forebrain. Transgenically targeted ablation of dividing GFAP-expressing cells in the adult mouse subependymal and subgranular zones stopped the generation of immunohistochemically identified neuroblasts and new neurons in the olfactory bulb and the hippocampal dentate gyrus. Transgenically targeted cell fate mapping showed that essentially all neuroblasts and neurons newly generated in the adult mouse forebrain in vivo, and in adult multipotent neurospheres in vitro, derived from progenitors that expressed GFAP. Constitutively dividing GFAP-expressing progenitors showed predominantly bipolar or unipolar morphologies with significantly fewer processes than non-neurogenic multipolar astrocytes. These findings identify morphologically distinctive GFAP-expressing progenitor cells as the predominant sources of constitutive adult neurogenesis, and provide new methods for manipulating and investigating these cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of transgene-derived HSV-TK and GFAP and labeling by BrdU in the SEZ and SGZ of adult GFAP-TK mice.
Figure 2: Depletion of BrdU labeling and neuroblast staining by progressive ablation of dividing GFAP-TK cells in the SEZ and SGZ.
Figure 3: Chronic ablation of dividing GFAP-TK cells stops the generation of new neurons in the adult olfactory bulb (OB) and dentate gyrus (DG).
Figure 4: Cre/loxP-mediated fate mapping of GFAP-expressing progenitors.
Figure 5: Adult neuroblasts and adult-born neurons express reporter protein in GFAP-Cre reporter mice in vitro and in vivo.
Figure 6: Dividing, GFAP-expressing progenitors in the adult SEZ and SGZ have a bipolar or unipolar phenotype that differs from nondividing multipolar stellate astrocytes.

Similar content being viewed by others

References

  1. Gage, F.H. Mammalian neural stem cells. Science 287, 1433–1438 (2000).

    Article  CAS  Google Scholar 

  2. Gould, E., Beylin, A., Tanapat, P., Reeves, A. & Shors, T.J. Learning enhances adult neurogenesis in the hippocampal formation. Nat. Neurosci. 2, 260–265 (1999).

    Article  CAS  Google Scholar 

  3. Lois, C., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. Chain migration of neuronal precursors. Science 271, 978–981 (1996).

    Article  CAS  Google Scholar 

  4. van Praag, H. et al. Functional neurogenesis in adult hippocampus. Nature 415, 1030–1034 (2002).

    Article  CAS  Google Scholar 

  5. Luskin, M.B. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11, 173–189 (1993).

    Article  CAS  Google Scholar 

  6. Johansson, C.B. et al. Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96, 25–34 (1999).

    Article  CAS  Google Scholar 

  7. Capela, A. & Temple, S. LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal. Neuron 35, 865–875 (2002).

    Article  Google Scholar 

  8. Chiasson, B.J., Tropepe, V., Morshead, C.M. & van der Kooy, D. Adult mammalian forebrain ependymal and subependymal cells demonstrate proliferative potential, but only subependymal cells have neural stem cell characteristics. J. Neurosci. 19, 4462–4471 (1999).

    Article  CAS  Google Scholar 

  9. Doetsch, F., Caille, I., Lim, D.A., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).

    Article  CAS  Google Scholar 

  10. Laywell, E.D., Rakic, P., Kukekov, V.G., Holland, E.C. & Steindler, D.A. Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc. Natl. Acad. Sci. USA 97, 13883–13888 (2000).

    Article  CAS  Google Scholar 

  11. Seri, B., Garcia-Verdugo, J.M., McEwen, B.S. & Alvarez-Buylla, A. Astrocytes give rise to new neurons in the adult mammalian hippocampus. J. Neurosci. 21, 7153–7160 (2001).

    Article  CAS  Google Scholar 

  12. Imura, T., Kornblum, H.I. & Sofroniew, M.V. The predominant neural stem cell isolated from postnatal and adult forebrain but not from early embryonic forebrain expresses GFAP. J. Neurosci. 23, 2824–2832 (2003).

    Article  CAS  Google Scholar 

  13. Morshead, C.M., Garcia, A.D., Sofroniew, M.V. & Van Der Kooy, D. The ablation of glial fibrillary acidic protein-positive cell from the adult central nervous system results in the loss of forebrain neural stem cells but not retinal stem cells. Eur. J. Neurosci. 18, 76–84 (2003).

    Article  Google Scholar 

  14. Rietze, R.L. et al. Purification of a pluripotent neural stem cell from the adult mouse brain. Nature 412, 736–739 (2001).

    Article  CAS  Google Scholar 

  15. Kondo, T. & Raff, M. Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289, 1754–1757 (2000).

    Article  CAS  Google Scholar 

  16. Bush, T.G. et al. Fulminant jejuno-ileitis following ablation of enteric glia in adult transgenic mice. Cell 93, 189–201 (1998).

    Article  CAS  Google Scholar 

  17. Bush, T.G. et al. Leukocyte infiltration, neuronal degeneration and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron 23, 297–308 (1999).

    Article  CAS  Google Scholar 

  18. Seki, T. Expression patterns of immature neuronal markers PSA-NCAM, CRMP-4 and NeuroD in the hippocampus of young adult and aged rodents. J. Neurosci. Res. 70, 327–334 (2002).

    Article  CAS  Google Scholar 

  19. Gleeson, J.G., Lin, P.T., Flanagan, L.A. & Walsh, C.A. Doublecortin is a microtuble-associated protein and is expressed by migrating neurons. Neuron 23, 257–271 (1999).

    Article  CAS  Google Scholar 

  20. Bai, J. et al. RNAi reveals doublecortin is required for radial migration in rat neocortex. Nat. Neurosci. 6, 1277–1283 (2003).

    Article  CAS  Google Scholar 

  21. Rao, M.S. & Shetty, A.K. Efficacy of doublecortin as a marker to analyse the absolute number and dendritic growth of newly generated neurons in the adult dentate gyrus. Eur. J. Neurosci. 19, 234–246 (2004).

    Article  Google Scholar 

  22. Song, H., Stevens, C.F. & Gage, F.H. Astroglia induce neurogenesis from adult neural stem cells. Nature 417, 39–44 (2002).

    Article  CAS  Google Scholar 

  23. Sauer, B. Site-specific recombination: developments and applications. Curr. Opin. Biotechol. 5, 521–527 (1994).

    Article  CAS  Google Scholar 

  24. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71 (1999).

    Article  CAS  Google Scholar 

  25. Novak, A., Guo, C., Yang, W., Nagy, A. & Lobe, C. G, Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. Genesis 28, 147–155 (2000).

    Article  CAS  Google Scholar 

  26. Reynolds, B.A. & Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710 (1992).

    Article  CAS  Google Scholar 

  27. Morshead, C.M. et al. Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 13, 1071–1082 (1994).

    Article  CAS  Google Scholar 

  28. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple sepctral variants of GFP. Neuron 28, 41–51 (2000).

    Article  CAS  Google Scholar 

  29. Borrelli, E., Heyman, R.A., Arias, C., Sawchenko, P.E. & Evans, R.M. Transgenic mice with inducible dwarfism. Nature 339, 538–541 (1989).

    Article  CAS  Google Scholar 

  30. Mathis, C., Hindelang, C., LeMeur, M. & Borrelli, E. A trangenic mouse model for inducible and reversible dysmyelination. J. Neurosci. 20, 7698–7705 (2000).

    Article  CAS  Google Scholar 

  31. Zinyk, D.L., Mercer, E.H., Harris, E., Anderson, D.J. & Joyner, A.L. Fate mapping of the mouse midbrain-hindbrain constriction using a site-specific recombination system. Curr. Biol. 8, 665–668 (1998).

    Article  CAS  Google Scholar 

  32. Malatesta, P. et al. Neuronal or glial progeny: regional differences in radial glia fate. Neuron 37, 751–764 (2003).

    Article  CAS  Google Scholar 

  33. Buniatian, G. et al. The immunoreactivity of glial fibrillary acidic protein in mesangial cells and podocytes of the glomeruli of rat kidney in vivo and in culture. Biol. Cell. 90, 53–56 (1998).

    Article  CAS  Google Scholar 

  34. Neubauer, K., Knittel, T., Aurisch, S., Fellmer, P. & Ramadori, G. Glial fibrillary acidic protein–a cell type specific marker for Ito cells in vivo and in vitro. J. Hepatol. 24, 719–730 (1996).

    Article  CAS  Google Scholar 

  35. Eliasson, C. et al. Intermediate filament protein partnership in astrocytes. J. Biol. Chem. 274, 23996–23406 (1999).

    Article  CAS  Google Scholar 

  36. Frisen, J., Johansson, C.B., Torok, C., Risling, M. & Lendahl, U. Rapid, widespread, and longlasting induction of nestin contributes to the generation of glial scar tissue after CNS injury. J. Cell Biol. 131, 453–464 (1995).

    Article  CAS  Google Scholar 

  37. Lendahl, U., Zimmerman, L.B. & McKay, R.D. CNS stem cells express a new class of intermediate filament protein. Cell 60, 585–595 (1990).

    Article  CAS  Google Scholar 

  38. Gomi, H. et al. Mice devoid of the glial fibrillary acidic protein develop normally and are susceptible to scrapie prions. Neuron 14, 29–41 (1995).

    Article  CAS  Google Scholar 

  39. Pekny, M. et al. Mice lacking glial fibrillary acidic protein display astrocytes devoid of intermediate filaments but develop and reproduce normally. EMBO J. 14, 1590–1598 (1995).

    Article  CAS  Google Scholar 

  40. Shors, T.J. et al. Neurogenesis in the adult is involved in the formation of trace memories. Nature 410, 372–376 (2001).

    Article  CAS  Google Scholar 

  41. Santarelli, L. et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301, 805–809 (2003).

    Article  CAS  Google Scholar 

  42. Mignone, J.L., Kukekov, V., Chiang, A.S., Steindler, D. & Enikolopov, G. Neural stem and progenitor cells in nestin-GFP transgenic mice. J. Comp. Neurol. 469, 311–324 (2004).

    Article  CAS  Google Scholar 

  43. Noctor, S.C., Flint, A.C., Weissman, T.A., Dammerman, R.S. & Kriegstein, A.R. Neurons derived from radial glial cells establish radial units in neocortex. Nature 409, 714–720 (2001).

    Article  CAS  Google Scholar 

  44. Anthony, T.E., Klein, C., Fishell, G. & Heintz, N. Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron 41, 881–889 (2004).

    Article  CAS  Google Scholar 

  45. Schmechel, D.E. & Rakic, P. A Golgi study of radial glial cells in developing monkey telencephalon: morphogenesis and transformation into astrocytes. Anat. Embryol. (Berl.) 156, 115–152 (1979).

    Article  CAS  Google Scholar 

  46. Levitt, P. & Rakic, P. Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain. J. Comp. Neurol. 193, 815–840 (1980).

    Article  CAS  Google Scholar 

  47. Rickmann, M., Amaral, D.G. & Cowan, W.M. Organization of radial glial cells during the development of the rat dentate gyrus. J. Comp. Neurol. 264, 449–479 (1987).

    Article  CAS  Google Scholar 

  48. Johnson, W.B. et al. Indicator expression directed by regulatory sequences of the glial fibrillary acidic protein (GFAP) gene: in vitro comparison of distinct GFAP-lacZ transgenes. Glia 13, 174–184 (1995).

    Article  CAS  Google Scholar 

  49. Balzarini, J. et al. Superior cytostatic activity of the ganciclovir elaidic acid ester due to the prolonged intracellular retention of ganciclovir anabolites in herpes simplex virus type 1 thymidine kinase gene-transfected tumor cells. Gene Ther. 5, 419–426 (1998).

    Article  CAS  Google Scholar 

  50. Gundersen, H.J.G. et al. Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. Acta Path. Microbiol. Immunol. Scand. 96, 379–394 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the US National Institutes of Health (NINDS) NS042693 and NS47386, and a Stein/Oppenheimer Award. ADRG is supported by a Ford Foundation predoctoral fellowship. We thank M.E. Sislak and T. Chiem for technical assistance. We thank F. Myhren and Clavis Pharma for eGCV, and P. Borgese and Hoffman La Roche for GCV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael V Sofroniew.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Subpopulations of neurons express reporter protein in the olfactory bulbs and dentate gyrus, but not in the striatum. Single channel (a1-a2, b1-b2, c1-c2) and merged images (a3, b3, c3) of the confocal micrographs seen in Figure 5h, i, and k, respectively, showing βGal (green, a1) or GFP (green, b1, c1) and NeuN (blue, a2, b2, c2) double immunofluorescence staining in the striatum (a1-a3), olfactory bulb (b1-b3), and dentate gyrus (c1-c3). (a1-a3) In the striatum, NeuN-positive neurons do not express reporter protein (βGal); a βGal-positive cell that does not co-label with NeuN has the appearance of an astrocyte. (b1-b3) In the granule cell layer (GCL) of olfactory bulb, a subset of NeuN-positive cells are double labeled with GFP (arrows). (c1-c3) In the GCL of the dentate gyrus, a subset of NeuN-positive cells are double labeled with GFP (arrows); a GFP-positive cell that does not co-label with NeuN has the appearance of an astrocyte (arrowhead). (PDF 153 kb)

Supplementary Fig. 2

Dividing GFAP-positive/TK-positive cells in the SEZ and SGZ have a bipolar or unipolar morphology. Single channel (a1-a3, b1-b3) and merged images (a4, b4) of the confocal micrographs seen in Figure 6a and b. Triple immunofluorescence staining for BrdU (red), GFAP (green) and TK (blue) identifies triple stained cells in the SEZ (a1-a4) and SGZ (b1-b4). Triple stained areas where red, green and blue overlap appear white in the overlay images. The cell in (a) exhibits triple staining in much of the cell body. The cell in (b) exhibits white triple staining only in a few regions where GFAP positive filaments extend into the cell body, however, examination of all three channels separately and in overlay shows that the cell is clearly triple labeled. (PDF 141 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia, A., Doan, N., Imura, T. et al. GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci 7, 1233–1241 (2004). https://doi.org/10.1038/nn1340

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1340

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing