[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neural coding during active somatosensation revealed using illusory touch

Abstract

Active sensation requires the convergence of external stimuli with representations of body movements. We used mouse behavior, electrophysiology and optogenetics to dissect the temporal interactions among whisker movement, neural activity and sensation of touch. We photostimulated layer 4 activity in single barrels in a closed loop with whisking. Mimicking touch-related neural activity caused illusory perception of an object at a particular location, but scrambling the timing of the spikes over one whisking cycle (tens of milliseconds) did not abolish the illusion, indicating that knowledge of instantaneous whisker position is unnecessary for discriminating object locations. The illusions were induced only during bouts of directed whisking, when mice expected touch, and in the relevant barrel. Reducing activity biased behavior, consistent with a spike count code for object detection at a particular location. Our results show that mice integrate coding of touch with movement over timescales of a whisking bout to produce perception of active touch.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the experimental system and whisking strategy during object location discrimination.
Figure 2: L4 neurons spike with precise latencies during object location discrimination.
Figure 3: Decoding object location and behavioral choice on the basis of L4 spikes.
Figure 4: Optogenetic stimulation mimics touch-evoked spiking in L4 neurons.
Figure 5: Closed-loop photostimulation causes illusory perception of object location.
Figure 6: Precise millisecond-timescale spike latencies are not required for detecting an object at a particular location.
Figure 7: Optogenetic silencing of the C2 column biases behavioral choice toward no responses, which is consistent with spike count coding.
Figure 8: Illusory object location can be evoked only during periods of tactile exploration marked by whisking bouts.

Similar content being viewed by others

References

  1. Wolpert, D.M. & Flanagan, J.R. Motor prediction. Curr. Biol. 11, R729–R732 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Knutsen, P.M., Pietr, M. & Ahissar, E. Haptic object localization in the vibrissal system: behavior and performance. J. Neurosci. 26, 8451–8464 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Voigts, J., Sakmann, B. & Celikel, T. Unsupervised whisker tracking in unrestrained behaving animals. J. Neurophysiol. 100, 504–515 (2008).

    Article  PubMed  Google Scholar 

  4. Clack, N.G. et al. Automated tracking of whiskers in videos of head fixed rodents. PLOS Comput. Biol. 8, e1002591 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pammer, L. et al. The mechanical variables underlying object localization along the axis of the whisker. J. Neurosci. 33, 6726–6741 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. O'Connor, D.H. et al. Vibrissa-based object localization in head-fixed mice. J. Neurosci. 30, 1947–1967 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bagdasarian, K. et al. Pre-neuronal morphological processing of object location by individual whiskers. Nat. Neurosci. 16, 622–631 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Kleinfeld, D. & Deschenes, M. Neuronal basis for object location in the vibrissa scanning sensorimotor system. Neuron 72, 455–468 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mehta, S.B., Whitmer, D., Figueroa, R., Williams, B.A. & Kleinfeld, D. Active spatial perception in the vibrissa scanning sensorimotor system. PLoS Biol. 5, e15 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Knutsen, P.M. & Ahissar, E. Orthogonal coding of object location. Trends Neurosci. 32, 101–109 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Hutson, K.A. & Masterton, R.B. The sensory contribution of a single vibrissa's cortical barrel. J. Neurophysiol. 56, 1196–1223 (1986).

    Article  CAS  PubMed  Google Scholar 

  12. O'Connor, D.H., Peron, S.P., Huber, D. & Svoboda, K. Neural activity in barrel cortex underlying vibrissa-based object localization in mice. Neuron 67, 1048–1061 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. de Kock, C.P., Bruno, R.M., Spors, H. & Sakmann, B. Layer- and cell-type–specific suprathreshold stimulus representation in rat primary somatosensory cortex. J. Physiol. (Lond.) 581, 139–154 (2007).

    Article  CAS  Google Scholar 

  14. Diamond, M.E., von Heimendahl, M., Knutsen, P.M., Kleinfeld, D. & Ahissar, E. 'Where' and 'what' in the whisker sensorimotor system. Nat. Rev. Neurosci. 9, 601–612 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Hill, D.N., Curtis, J.C., Moore, J.D. & Kleinfeld, D. Primary motor cortex reports efferent control of vibrissa motion on multiple timescales. Neuron 72, 344–356 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Petreanu, L. et al. Activity in motor-sensory projections reveals distributed coding in somatosensation. Nature 489, 299–303 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huber, D. et al. Multiple dynamic representations in the motor cortex during sensorimotor learning. Nature 484, 473–478 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Poulet, J.F., Fernandez, L.M., Crochet, S. & Petersen, C.C. Thalamic control of cortical states. Nat. Neurosci. 15, 370–372 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Yu, C., Derdikman, D., Haidarliu, S. & Ahissar, E. Parallel thalamic pathways for whisking and touch signals in the rat. PLoS Biol. 4, e124 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fee, M.S., Mitra, P.P. & Kleinfeld, D. Central versus peripheral determinants of patterned spike activity in rat vibrissa cortex during whisking. J. Neurophysiol. 78, 1144–1149 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Crochet, S. & Petersen, C.C. Correlating whisker behavior with membrane potential in barrel cortex of awake mice. Nat. Neurosci. 9, 608–610 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Lefort, S., Tomm, C., Floyd Sarria, J.C. & Petersen, C.C. The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron 61, 301–316 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Simons, D.J. Temporal and spatial integration in the rat SI vibrissa cortex. J. Neurophysiol. 54, 615–635 (1985).

    Article  CAS  PubMed  Google Scholar 

  24. Armstrong-James, M., Fox, K. & Das-Gupta, A. Flow of excitation within rat barrel cortex on striking a single vibrissa. J. Neurophysiol. 68, 1345–1358 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Petreanu, L., Mao, T., Sternson, S.M. & Svoboda, K. The subcellular organization of neocortical excitatory connections. Nature 457, 1142–1145 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lu, S.M. & Lin, R.C.S. Thalamic afferents of the rat barrel cortex: a light- and electron-microscopic study using Phaseolus vulgaris leucoagglutinin as an anterograde tracer. Somatosens. Mot. Res. 10, 1–16 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Curtis, J.C. & Kleinfeld, D. Phase-to-rate transformations encode touch in cortical neurons of a scanning sensorimotor system. Nat. Neurosci. 12, 492–501 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Li, X. et al. Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc. Natl. Acad. Sci. USA 102, 17816–17821 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu, N.L. et al. Nonlinear dendritic integration of sensory and motor input during an active sensing task. Nature 492, 247–251 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Romo, R., Hernandez, A., Zainos, A., Brody, C.D. & Lemus, L. Sensing without touching: psychophysical performance based on cortical microstimulation. Neuron 26, 273–278 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Histed, M.H., Ni, A.M. & Maunsell, J.H. Insights into cortical mechanisms of behavior from microstimulation experiments. Prog. Neurobiol. 103, 115–130 (2013).

    Article  PubMed  Google Scholar 

  33. Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Liao, G.Y. & Xu, B. Cre recombinase-mediated gene deletion in layer 4 of murine sensory cortical areas. Genesis 46, 289–293 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nagel, G. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. USA 100, 13940–13945 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Atasoy, D., Aponte, Y., Su, H.H. & Sternson, S.M.A. FLEX switch targets channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J. Neurosci. 28, 7025–7030 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Masino, S.A., Kwon, M.C., Dory, Y. & Frostig, R.D. Characterization of functional organization within rat barrel cortex using intrinsic signal optical imaging through a thinned skull. Proc. Natl. Acad. Sci. USA 90, 9998–10002 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huber, D. et al. Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice. Nature 451, 61–64 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhao, S. et al. Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nat. Methods 8, 745–752 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Salzman, C.D., Britten, K.H. & Newsome, W.T. Cortical microstimulation influences perceptual judgements of motion direction. Nature 346, 174–177 (1990).

    Article  CAS  PubMed  Google Scholar 

  41. O'Connor, D.H., Huber, D. & Svoboda, K. Reverse engineering the mouse brain. Nature 461, 923–929 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Luo, L., Callaway, E.M. & Svoboda, K. Genetic dissection of neural circuits. Neuron 57, 634–660 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yarbus, A.L. Eye Movements and Vision (Plenum Press, 1967).

  44. Veinante, P., Lavallee, P. & Deschenes, M. Corticothalamic projections from layer 5 of the vibrissal barrel cortex in the rat. J. Comp. Neurol. 424, 197–204 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Mitchinson, B. et al. Active vibrissal sensing in rodents and marsupials. Phil. Trans. R. Soc. Lond. B 366, 3037–3048 (2011).

    Article  Google Scholar 

  46. Jadhav, S.P., Wolfe, J. & Feldman, D.E. Sparse temporal coding of elementary tactile features during active whisker sensation. Nat. Neurosci. 12, 792–800 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Panzeri, S., Petersen, R.S., Schultz, S.R., Lebedev, M. & Diamond, M.E. The role of spike timing in the coding of stimulus location in rat somatosensory cortex. Neuron 29, 769–777 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Pinto, D.J., Brumberg, J.C. & Simons, D.J. Circuit dynamics and coding strategies in rodent somatosensory cortex. J. Neurophysiol. 83, 1158–1166 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Larkum, M.E., Senn, W. & Luscher, H.R. Top-down dendritic input increases the gain of layer 5 pyramidal neurons. Cereb. Cortex 14, 1059–1070 (2004).

    Article  PubMed  Google Scholar 

  50. Letzkus, J.J. et al. A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature 480, 331–335 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Madisen, L. et al. A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat. Neurosci. 15, 793–802 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Slotnick, B. A simple 2-transistor touch or lick detector circuit. J. Exp. Anal. Behav. 91, 253–255 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Shaner, N.C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Armbruster, B.N., Li, X., Pausch, M.H., Herlitze, S. & Roth, B.L. Evolving the lock to fit the key to create a family of G protein–coupled receptors potently activated by an inert ligand. Proc. Natl. Acad. Sci. USA 104, 5163–5168 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Maier, D.L. et al. Disrupted cortical map and absence of cortical barrels in growth-associated protein (GAP)-43 knockout mice. Proc. Natl. Acad. Sci. USA 96, 9397–9402 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Karlsson, M.P. & Frank, L.M. Network dynamics underlying the formation of sparse, informative representations in the hippocampus. J. Neurosci. 28, 14271–14281 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hill, D.N., Mehta, S.B. & Kleinfeld, D. Quality metrics to accompany spike sorting of extracellular signals. J. Neurosci. 31, 8699–8705 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Smear, M. Hooks, L. Petreanu, N. Sofroniew, A. Lee, H. Yang, D. Golomb and J. Dudman for comments on the manuscript, N. Sofroniew for valuable suggestions on experiments, S. Michael for histology, S. Sternson and L. Looger (Janelia Farm) for reagents, T. Harris, B. Barbarits, A. Leonardo, C. Culianu, V. Iyer and D. Gutnisky (Janelia Farm) for help with silicon probe recordings and M. Karlsson for help with spike clustering.

Author information

Authors and Affiliations

Authors

Contributions

D.H.O., S.A.H., Z.V.G., N.L., J.Y. and Q.-Q.S. performed experiments. D.H., Z.V.G. and N.L. developed the symmetric response task paradigm. D.H.O., S.A.H. and K.S. planned the project. D.H.O., S.A.H., Z.V.G., N.L. and K.S. analyzed the data. D.H.O., S.A.H. and K.S. wrote the paper with comments from the other authors.

Corresponding author

Correspondence to Karel Svoboda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 (PDF 2506 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Connor, D., Hires, S., Guo, Z. et al. Neural coding during active somatosensation revealed using illusory touch. Nat Neurosci 16, 958–965 (2013). https://doi.org/10.1038/nn.3419

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3419

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing