Abstract
In the vibrissal system, touch information is conveyed by a receptorless whisker hair to follicle mechanoreceptors, which then provide input to the brain. We examined whether any processing, that is, meaningful transformation, occurs in the whisker itself. Using high-speed videography and tracking the movements of whiskers in anesthetized and behaving rats, we found that whisker-related morphological phase planes, based on angular and curvature variables, can represent the coordinates of object position after contact in a reliable manner, consistent with theoretical predictions. By tracking exposed follicles, we found that the follicle-whisker junction is rigid, which enables direct readout of whisker morphological coding by mechanoreceptors. Finally, we found that our behaving rats pushed their whiskers against objects during localization in a way that induced meaningful morphological coding and, in parallel, improved their localization performance, which suggests a role for pre-neuronal morphological computation in active vibrissal touch.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
£139.00 per year
only £11.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Kleinfeld, D., Ahissar, E. & Diamond, M.E. Active sensation: insights from the rodent vibrissa sensorimotor system. Curr. Opin. Neurobiol. 16, 435–444 (2006).
Diamond, M.E., von Heimendahl, M., Knutsen, P.M., Kleinfeld, D. & Ahissar, E. 'Where' and 'what' in the whisker sensorimotor system. Nat. Rev. Neurosci. 9, 601–612 (2008).
Ebara, S., Kumamoto, K., Matsuura, T., Mazurkiewicz, J.E. & Rice, F.L. Similarities and differences in the innervation of mystacial vibrissal follicle-sinus complexes in the rat and cat: a confocal microscopic study. J. Comp. Neurol. 449, 103–119 (2002).
Hartmann, M.J., Johnson, N.J., Towal, R.B. & Assad, C. Mechanical characteristics of rat vibrissae: resonant frequencies and damping in isolated whiskers and in the awake behaving animal. J. Neurosci. 23, 6510–6519 (2003).
Ritt, J.T., Andermann, M.L. & Moore, C.I. Embodied information processing: vibrissa mechanics and texture features shape micromotions in actively sensing rats. Neuron 57, 599–613 (2008).
Wolfe, J. et al. Texture coding in the rat whisker system: slip-stick versus differential resonance. PLoS Biol. 6, e215 (2008).
Szwed, M., Bagdasarian, K. & Ahissar, E. Encoding of vibrissal active touch. Neuron 40, 621–630 (2003).
Szwed, M. et al. Responses of trigeminal ganglion neurons to the radial distance of contact during active vibrissal touch. J. Neurophysiol. 95, 791–802 (2006).
Lottem, E. & Azouz, R. Dynamic translation of surface coarseness into whisker vibrations. J. Neurophysiol. 100, 2852–2865 (2008).
Arabzadeh, E., Zorzin, E. & Diamond, M.E. Neuronal encoding of texture in the whisker sensory pathway. PLoS Biol. 3, e17 (2005).
Andermann, M.L., Ritt, J., Neimark, M.A. & Moore, C.I. Neural correlates of vibrissa resonance; band-pass and somatotopic representation of high-frequency stimuli. Neuron 42, 451–463 (2004).
Knutsen, P.M. & Ahissar, E. Orthogonal coding of object location. Trends Neurosci. 32, 101–109 (2009).
Kleinfeld, D. & Deschênes, M. Neuronal basis for object location in the vibrissa scanning sensorimotor system. Neuron 72, 455–468 (2011).
Birdwell, J.A. et al. Biomechanical models for radial distance detection by rat vibrissae. J. Neurophysiol. 98, 2439–2455 (2007).
Quist, B.W. & Hartmann, M.J. Mechanical signals at the base of a rat vibrissa: the effect of intrinsic vibrissa curvature and implications for tactile exploration. J. Neurophysiol. 107, 2298–2312 (2012).
Solomon, J.H. & Hartmann, M.J. Radial distance determination in the rat vibrissal system and the effects of Weber's law. Phil. Trans. R. Soc. Lond. B 366, 3049–3057 (2011).
Boubenec, Y., Shulz, D.E. & Debregeas, G. Whisker encoding of mechanical events during active tactile exploration. Front. Behav. Neurosci. 6, 74 (2012).
Knutsen, P.M., Derdikman, D. & Ahissar, E. Tracking whisker and head movements in unrestrained behaving rodents. J. Neurophysiol. 93, 2294–2301 (2005).
Pearson, M.J., Mitchinson, B., Sullivan, J.C., Pipe, A.G. & Prescott, T.J. Biomimetic vibrissal sensing for robots. Phil. Trans. R. Soc. Lond. B 366, 3085–3096 (2011).
Prescott, T.J., Pearson, M.J., Mitchinson, B., Sullivan, J.C.W. & Pipe, A.G. Whisking with robots. IEEE Robot. Autom. Mag. 16, 42–50 (2009).
Towal, R.B., Quist, B.W., Gopal, V., Solomon, J.H. & Hartmann, M.J. The morphology of the rat vibrissal array: a model for quantifying spatiotemporal patterns of whisker-object contact. PLoS Comput. Biol. 7, e1001120 (2011).
Pfeifer, R. & Gomez, G. Morphological computation: connecting brain, body and environment. in Creating Brain-like Intelligence: From Basic Principles to Complex Intelligent Systems (eds. Sendhoff, B., Körner, E., Sporns, O., Ritter, H. & Doya, K.) 66–83 (2009).
Knutsen, P.M., Pietr, M. & Ahissar, E. Haptic object localization in the vibrissal system: behavior and performance. J. Neurosci. 26, 8451–8464 (2006).
O'Connor, D.H. et al. Vibrissa-based object localization in head-fixed mice. J. Neurosci. 30, 1947–1967 (2010).
Deutsch, D., Pietr, M., Knutsen, P.M., Ahissar, E. & Schneidman, E. Fast feedback in active sensing: touch-induced changes to whisker-object interaction. PLoS ONE 7, e44272 (2012).
Mitchinson, B., Martin, C.J., Grant, R.A. & Prescott, T.J. Feedback control in active sensing: rat exploratory whisking is modulated by environmental contact. Proc. Biol. Sci. 274, 1035–1041 (2007).
O'Regan, J.K. & Noe, A. A sensorimotor account of vision and visual consciousness. Behav. Brain Sci. 24, 939–973, discussion 973–1031 (2001).
Euler, L. Eneström Number 65: Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes, Sive Solutio Problematis Isoperimetrici Lattissimo Sensu Accepti (Marcum-Michaelem Bousquet and Socios, Geneva, 1744).
Hill, D.N., Curtis, J.C., Moore, J.D. & Kleinfeld, D. Primary motor cortex reports efferent control of vibrissa motion on multiple timescales. Neuron 72, 344–356 (2011).
Gordon, G. & Ahissar, E. Hierarchical curiosity loops and active sensing. Neural Netw. 32, 119–129 (2012).
Ahissar, E., Abeles, M., Ahissar, M., Haidarliu, S. & Vaadia, E. Hebbian-like functional plasticity in the auditory cortex of the behaving monkey. Neuropharmacology 37, 633–655 (1998).
Ego-Stengel, V., Shulz, D.E., Haidarliu, S., Sosnik, R. & Ahissar, E. Acetylcholine-dependent induction and expression of functional plasticity in the barrel cortex of the adult rat. J. Neurophysiol. 86, 422–437 (2001).
Bahar, A., Dudai, Y. & Ahissar, E. Neural signature of taste familiarity in the gustatory cortex of the freely behaving rat. J. Neurophysiol. 92, 3298–3308 (2004).
Saig, A., Gordon, G., Assa, E., Arieli, A. & Ahissar, E. Motor-sensory confluence in tactile perception. J. Neurosci. 32, 14022–14032 (2012).
Ahissar, E. & Knutsen, P.M. Object localization with whiskers. Biol. Cybern. 98, 449–458 (2008).
Horev, G. et al. Motor-sensory convergence in object localization: a comparative study in rats and humans. Phil. Trans. R. Soc. Lond. B 366, 3070–3076 (2011).
Mitchinson, B. et al. Empirically inspired simulated electro-mechanical model of the rat mystacial follicle-sinus complex. Proc. Biol. Sci. 271, 2509–2516 (2004).
Lottem, E. & Azouz, R. A unifying framework underlying mechanotransduction in the somatosensory system. J. Neurosci. 31, 8520–8532 (2011).
Hill, D.N., Bermejo, R., Zeigler, H.P. & Kleinfeld, D. Biomechanics of the vibrissa motor plant in rat: rhythmic whisking consists of triphasic neuromuscular activity. J. Neurosci. 28, 3438–3455 (2008).
Simony, E. et al. Temporal and spatial characteristics of vibrissa responses to motor commands. J. Neurosci. 30, 8935–8952 (2010).
Haidarliu, S., Simony, E., Golomb, D. & Ahissar, E. Muscle architecture in the mystacial pad of the rat. Anat. Rec. (Hoboken) 293, 1192–1206 (2010).
Stüttgen, M.C., Kullmann, S. & Schwarz, C. Responses of rat trigeminal ganglion neurons to longitudinal whisker stimulation. J. Neurophysiol. 100, 1879–1884 (2008).
Pammer, L. et al. The mechanical variables underlying object localization along the axis of the whisker. J. Neurosci. (in the press) (2013).
O'Connor, D.H., Peron, S.P., Huber, D. & Svoboda, K. Neural activity in barrel cortex underlying vibrissa-based object localization in mice. Neuron 67, 1048–1061 (2010).
Knutsen, P.M., Biess, A. & Ahissar, E. Vibrissal kinematics in 3D: tight coupling of azimuth, elevation, and torsion across different whisking modes. Neuron 59, 35–42 (2008).
Sachdev, R.N., Sato, T. & Ebner, F.F. Divergent movement of adjacent whiskers. J. Neurophysiol. 87, 1440–1448 (2002).
Chiel, H.J., Ting, L.H., Ekeberg, Ö. & Hartmann, M.J.Z. The brain in its body: motor control and sensing in a biomechanical context. J. Neurosci. 29, 12807–12814 (2009).
Cramer, N.P. & Keller, A. Cortical control of a whisking central pattern generator. J. Neurophysiol. 96, 209–217 (2006).
Harish, O. & Golomb, D. Control of the firing patterns of vibrissa motoneurons by modulatory and phasic synaptic inputs: a modeling study. J. Neurophysiol. 103, 2684–2699 (2010).
Herfst, L.J. & Brecht, M. Whisker movements evoked by stimulation of single motor neurons in the facial nucleus of the rat. J. Neurophysiol. 99, 2821–2832 (2008).
Pietr, M.D., Knutsen, P.M., Shore, D.I., Ahissar, E. & Vogel, Z. Cannabinoids reveal separate controls for whisking amplitude and timing in rats. J. Neurophysiol. 104, 2532–2542 (2010).
Weisstein, J.S., Goldsby, R.E. & O'Donnell, R.J. Oncologic approaches to pediatric limb preservation. J. Am. Acad. Orthop. Surg. 13, 544–554 (2005).
Acknowledgements
We thank D. Goldian and S. Haidarliu for technical assistance, N. Rubin for programming, B. Schick for reviewing, M. Hartmann and J. Solomon for critically reading the manuscript and for extensive and helpful discussions, and C. Moore, J. Ritt, L. Gomez, S. Barash and G. Bi for helpful suggestions. The article is dedicated to our late friend and colleague Maciej Pietr for his significant contribution to this work. This work was supported by the Israel Science Foundation (grant 749/10), the Minerva Foundation funded by the Federal German Ministry for Education and Research, the United States–Israel Binational Science Foundation (grant 2011432), the Ministry of Science and Technology (Israel), the Ministry of Research (Taiwan), and the Chief Scientist, Israeli Ministry of Health. K.B. acknowledges support by the KAMEA program administered by the Ministry of Absorption (Israel). P.M.K. was supported by a Long-Term Fellowship from the Human Frontier Science Program. E.A. holds the Helen Diller Family Professorial Chair of Neurobiology.
Author information
Authors and Affiliations
Contributions
K.B. and M.S. performed the artificial whisking experiments. K.B. designed and K.B. and M.S. performed the exposed follicle experiments. P.M.K., D. Deutsch and M.P. performed the head-fixed and freely moving experiments. K.B., M.S., P.M.K., D. Deutsch, D. Derdikman and E.S. analyzed data. K.B., M.S., P.M.K., D. Deutsch, D. Derdikman, E.S. and E.A. prepared figures. K.B., M.S., P.M.K., D. Deutsch, D. Derdikman and E.A. wrote the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Text and Figures
Supplementary Figure 1 (PDF 16 kb)
Supplementary Movie 1
Freely-moving rat (single whisker) (AVI 4463 kb)
Supplementary Movie 2
Freely-moving rat (intact pad) (AVI 2747 kb)
Supplementary Movie 3
Head-fixed rat (AVI 869 kb)
Supplementary Movie 4
Follicle-whisker dynamics (MOV 9554 kb)
Rights and permissions
About this article
Cite this article
Bagdasarian, K., Szwed, M., Knutsen, P. et al. Pre-neuronal morphological processing of object location by individual whiskers. Nat Neurosci 16, 622–631 (2013). https://doi.org/10.1038/nn.3378
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nn.3378