[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Negative regulation of glial engulfment activity by Draper terminates glial responses to axon injury

Abstract

Neuronal injury elicits potent cellular responses from glia, but molecular pathways modulating glial activation, phagocytic function and termination of reactive responses remain poorly defined. Here we show that positive or negative regulation of glial responses to axon injury is molecularly encoded by unique isoforms of the Drosophila melanogaster engulfment receptor Draper. Draper-I promotes engulfment of axonal debris through an immunoreceptor tyrosine–based activation motif (ITAM). In contrast, Draper-II, an alternative splice variant, potently inhibits glial engulfment function. Draper-II suppresses Draper-I signaling through a previously undescribed immunoreceptor tyrosine–based inhibitory motif (ITIM)-like domain and the tyrosine phosphatase Corkscrew (Csw). Intriguingly, loss of Draper-II–Csw signaling prolongs expression of glial engulfment genes after axotomy and reduces the ability of glia to respond to secondary axotomy. Our work highlights a novel role for Draper-II in inhibiting glial responses to neurodegeneration, and indicates that a balance of opposing Draper-I and Draper-II signaling events is essential to maintain glial sensitivity to brain injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Draper-I is sufficient for glial clearance of degenerating axons in the adult Drosophila CNS.
Figure 2: Draper-I is required for glial clearance of severed axons.
Figure 3: The extracellular domain of either Draper-II or Draper-III with the intracellular domain of Draper-I can trigger glial phagocytic activity.
Figure 4: Draper-II contains an inhibitory motif in the intracellular domain that inhibits glial engulfment activity.
Figure 5: Corkscrew associates preferentially with and dephosphorylates Draper-II.
Figure 6: Draper-II inhibition of glial engulfment of severed axons is mediated through Corkscrew.
Figure 7: Corkscrew signaling is required for normal termination of glial responses to axon degeneration.
Figure 8: Corkscrew signaling is required for proper glial clearance of severed axons.

Similar content being viewed by others

References

  1. Gebicke-Haerter, P.J. Microarrays and expression profiling in microglia research and in inflammatory brain disorders. J. Neurosci. Res. 81, 327–341 (2005).

    Article  CAS  Google Scholar 

  2. Sofroniew, M.V. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 32, 638–647 (2009).

    Article  CAS  Google Scholar 

  3. Logan, M.A. & Freeman, M.R. The scoop on the fly brain: glial engulfment functions in Drosophila. Neuron Glia Biol. 3, 63–74 (2007).

    Article  Google Scholar 

  4. Neumann, H., Kotter, M.R. & Franklin, R.J. Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 132, 288–295 (2008).

    Article  Google Scholar 

  5. Rothstein, J.D. et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16, 675–686 (1996).

    Article  CAS  Google Scholar 

  6. Lalancette-Hébert, M., Gowing, G., Simard, A., Weng, Y.C. & Kriz, J. Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J. Neurosci. 27, 2596–2605 (2007).

    Article  Google Scholar 

  7. Block, M.L., Zecca, L. & Hong, J.S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci. 8, 57–69 (2007).

    Article  CAS  Google Scholar 

  8. MacDonald, J.M. et al. The Drosophila cell corpse engulfment receptor Draper mediates glial clearance of severed axons. Neuron 50, 869–881 (2006).

    Article  CAS  Google Scholar 

  9. Perry, V.H., Nicoll, J.A. & Holmes, C. Microglia in neurodegenerative disease. Nat. Rev. Neurol. 6, 193–201 (2010).

    Article  Google Scholar 

  10. Bamberger, M.E., Harris, M.E., McDonald, D.R., Husemann, J. & Landreth, G.E. A cell surface receptor complex for fibrillar β-amyloid mediates microglial activation. J. Neurosci. 23, 2665–2674 (2003).

    Article  CAS  Google Scholar 

  11. Cho, S. et al. The class B scavenger receptor CD36 mediates free radical production and tissue injury in cerebral ischemia. J. Neurosci. 25, 2504–2512 (2005).

    Article  CAS  Google Scholar 

  12. Husemann, J., Loike, J.D., Anankov, R., Febbraio, M. & Silverstein, S.C. Scavenger receptors in neurobiology and neuropathology: their role on microglia and other cells of the nervous system. Glia 40, 195–205 (2002).

    Article  Google Scholar 

  13. Underhill, D.M. & Goodridge, H.S. The many faces of ITAMs. Trends Immunol. 28, 66–73 (2007).

    Article  CAS  Google Scholar 

  14. Daëron, M., Jaeger, S., Du Pasquier, L. & Vivier, E. Immunoreceptor tyrosine-based inhibition motifs: a quest in the past and future. Immunol. Rev. 224, 11–43 (2008).

    Article  Google Scholar 

  15. Pinheiro da Silva, F., Aloulou, M., Benhamou, M. & Monteiro, R.C. Inhibitory ITAMs: a matter of life and death. Trends Immunol. 29, 366–373 (2008).

    Article  Google Scholar 

  16. Napoli, I. & Neumann, H. Microglial clearance function in health and disease. Neuroscience 158, 1030–1038 (2009).

    Article  CAS  Google Scholar 

  17. Takahashi, K., Prinz, M., Stagi, M., Chechneva, O. & Neumann, H. TREM2-transduced myeloid precursors mediate nervous tissue debris clearance and facilitate recovery in an animal model of multiple sclerosis. PLoS Med. 4, e124 (2007).

    Article  Google Scholar 

  18. Ziegenfuss, J.S. et al. Draper-dependent glial phagocytic activity is mediated by Src and Syk family kinase signalling. Nature 453, 935–939 (2008).

    Article  CAS  Google Scholar 

  19. Freeman, M.R., Delrow, J., Kim, J., Johnson, E. & Doe, C.Q. Unwrapping glial biology: Gcm target genes regulating glial development, diversification, and function. Neuron 38, 567–580 (2003).

    Article  CAS  Google Scholar 

  20. McPhee, C.K., Logan, M.A., Freeman, M.R. & Baehrecke, E.H. Activation of autophagy during cell death requires the engulfment receptor Draper. Nature 465, 1093–1096 (2010).

    Article  CAS  Google Scholar 

  21. Awasaki, T. et al. Essential role of the apoptotic cell engulfment genes draper and ced-6 in programmed axon pruning during Drosophila metamorphosis. Neuron 50, 855–867 (2006).

    Article  CAS  Google Scholar 

  22. Cuttell, L. et al. Undertaker, a Drosophila Junctophilin, links Draper-mediated phagocytosis and calcium homeostasis. Cell 135, 524–534 (2008).

    Article  CAS  Google Scholar 

  23. Doherty, J., Logan, M.A., Tasdemir, O.E. & Freeman, M.R. Ensheathing glia function as phagocytes in the adult Drosophila brain. J. Neurosci. 29, 4768–4781 (2009).

    Article  CAS  Google Scholar 

  24. Fuentes-Medel, Y. et al. Glia and muscle sculpt neuromuscular arbors by engulfing destabilized synaptic boutons and shed presynaptic debris. PLoS Biol. 7, e1000184 (2009).

    Article  Google Scholar 

  25. Su, H.P. et al. Interaction of CED-6/GULP, an adapter protein involved in engulfment of apoptotic cells with CED-1 and CD91/low density lipoprotein receptor-related protein (LRP). J. Biol. Chem. 277, 11772–11779 (2002).

    Article  CAS  Google Scholar 

  26. Barrow, A.D. & Trowsdale, J. You say ITAM and I say ITIM, let's call the whole thing off: the ambiguity of immunoreceptor signalling. Eur. J. Immunol. 36, 1646–1653 (2006).

    Article  CAS  Google Scholar 

  27. Olcese, L. et al. Human and mouse killer-cell inhibitory receptors recruit PTP1C and PTP1D protein tyrosine phosphatases. J. Immunol. 156, 4531–4534 (1996).

    CAS  PubMed  Google Scholar 

  28. Blasioli, J., Paust, S. & Thomas, M.L. Definition of the sites of interaction between the protein tyrosine phosphatase SHP-1 and CD22. J. Biol. Chem. 274, 2303–2307 (1999).

    Article  CAS  Google Scholar 

  29. Flint, A.J., Tiganis, T., Barford, D. & Tonks, N.K. Development of “substrate-trapping” mutants to identify physiological substrates of protein tyrosine phosphatases. Proc. Natl. Acad. Sci. USA 94, 1680–1685 (1997).

    Article  CAS  Google Scholar 

  30. Herbst, R. et al. Daughter of sevenless is a substrate of the phosphotyrosine phosphatase Corkscrew and functions during sevenless signaling. Cell 85, 899–909 (1996).

    Article  CAS  Google Scholar 

  31. Perkins, L.A., Johnson, M.R., Melnick, M.B. & Perrimon, N. The nonreceptor protein tyrosine phosphatase corkscrew functions in multiple receptor tyrosine kinase pathways in Drosophila. Dev. Biol. 180, 63–81 (1996).

    Article  CAS  Google Scholar 

  32. Perrimon, N., Engstrom, L. & Mahowald, A.P. Developmental genetics of the 2C-D region of the Drosophila X chromosome. Genetics 111, 23–41 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Blank, U., Launay, P., Benhamou, M. & Monteiro, R.C. Inhibitory ITAMs as novel regulators of immunity. Immunol. Rev. 232, 59–71 (2009).

    Article  CAS  Google Scholar 

  34. Xie, Z.H., Zhang, J. & Siraganian, R.P. Positive regulation of c-Jun N-terminal kinase and TNF-β production but not histamine release by SHP-1 in RBL-2H3 mast cells. J. Immunol. 164, 1521–1528 (2000).

    Article  CAS  Google Scholar 

  35. Lee, S.M., Kim, E.J., Suk, K. & Lee, W.H. Synthetic peptides containing ITIM-like sequences of IREM-1 inhibit BAFF-mediated regulation of interleukin-8 expression and phagocytosis through SHP-1 and/or PI3K. Immunology 134, 224–233 (2011).

    Article  CAS  Google Scholar 

  36. Cahoy, J.D. et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264–278 (2008).

    Article  CAS  Google Scholar 

  37. Singh, T.D. et al. MEGF10 functions as a receptor for the uptake of amyloid-β. FEBS Lett. 584, 3936–3942 (2010).

    Article  CAS  Google Scholar 

  38. Wu, H.H. et al. Glial precursors clear sensory neuron corpses during development via Jedi-1, an engulfment receptor. Nat. Neurosci. 12, 1534–1541 (2009).

    Article  CAS  Google Scholar 

  39. Qin, L. et al. Microglial NADPH oxidase is a novel target for femtomolar neuroprotection against oxidative stress. FASEB J. 19, 550–557 (2005).

    Article  CAS  Google Scholar 

  40. Brambilla, R. et al. Inhibition of astroglial nuclear factor κB reduces inflammation and improves functional recovery after spinal cord injury. J. Exp. Med. 202, 145–156 (2005).

    Article  CAS  Google Scholar 

  41. Hamby, M.E., Hewett, J.A. & Hewett, S.J. TGF-β1 potentiates astrocytic nitric oxide production by expanding the population of astrocytes that express NOS-2. Glia 54, 566–577 (2006).

    Article  Google Scholar 

  42. Zhao, J., Brooks, D.M. & Lurie, D.I. Lipopolysaccharide-activated SHP-1-deficient motheaten microglia release increased nitric oxide, TNF-α, and IL-1β. Glia 53, 304–312 (2006).

    Article  Google Scholar 

  43. Chitnis, T. et al. Elevated neuronal expression of CD200 protects Wlds mice from inflammation-mediated neurodegeneration. Am. J. Pathol. 170, 1695–1712 (2007).

    Article  CAS  Google Scholar 

  44. Hoek, R.M. et al. Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 290, 1768–1771 (2000).

    Article  CAS  Google Scholar 

  45. Jenmalm, M.C., Cherwinski, H., Bowman, E.P., Phillips, J.H. & Sedgwick, J.D. Regulation of myeloid cell function through the CD200 receptor. J. Immunol. 176, 191–199 (2006).

    Article  CAS  Google Scholar 

  46. Koning, N., Swaab, D.F., Hoek, R.M. & Huitinga, I. Distribution of the immune inhibitory molecules CD200 and CD200R in the normal central nervous system and multiple sclerosis lesions suggests neuron-glia and glia-glia interactions. J. Neuropathol. Exp. Neurol. 68, 159–167 (2009).

    Article  CAS  Google Scholar 

  47. Leiserson, W.M., Harkins, E.W. & Keshishian, H. Fray, a Drosophila serine/threonine kinase homologous to mammalian PASK, is required for axonal ensheathment. Neuron 28, 793–806 (2000).

    Article  CAS  Google Scholar 

  48. Dietzl, G. et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448, 151–156 (2007).

    Article  CAS  Google Scholar 

  49. Biswas, R., Stein, D. & Stanley, E.R. Drosophila Dok is required for embryonic dorsal closure. Development 133, 217–227 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Awasaki, M. Simon, E. Perkins, B. Dickson and the Vienna Drosophila RNAi Center (VDRC) for sharing fly lines and antibodies. We thank K. Kerr for technical advice and expertise. This work was supported by US National Institutes of Health (NIH) Grant 1RO1NS053538 (M.R.F.), NIH New Faculty Recruitment Grant P30NS069346 P30 (M.A.L.), an American Cancer Society Postdoctoral Fellowship (PF-07-258-01-CSM) (M.A.L.) and the Medical Research Foundation of Oregon (M.A.L.). M.R.F. is a Howard Hughes Medical Institute Early Career Scientist.

Author information

Authors and Affiliations

Authors

Contributions

M.A.L. and M.R.F. developed the overall concept and design of the project. M.A.L. performed, analyzed and interpreted the majority of the experiments and wrote the initial version of the manuscript. R.H. performed the immunoprecipitation and western blot experiments with S2 cells and adult flies. J.D. performed the experiments with cswva199 and provided intellectual input for the study. S.D.S. performed and analyzed the qRT-PCR time course of Draper-I, Draper-I and Csw expression after injury and assisted with double injury experiments. A.S. generated the extracellular-intracellular Draper domain swap constructs.

Corresponding author

Correspondence to Mary A Logan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 7000 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Logan, M., Hackett, R., Doherty, J. et al. Negative regulation of glial engulfment activity by Draper terminates glial responses to axon injury. Nat Neurosci 15, 722–730 (2012). https://doi.org/10.1038/nn.3066

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3066

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing