Abstract
Human observers combine multiple sensory cues synergistically to achieve greater perceptual sensitivity, but little is known about the underlying neuronal mechanisms. We recorded the activity of neurons in the dorsal medial superior temporal (MSTd) area during a task in which trained monkeys combined visual and vestibular cues near-optimally to discriminate heading. During bimodal stimulation, MSTd neurons combined visual and vestibular inputs linearly with subadditive weights. Neurons with congruent heading preferences for visual and vestibular stimuli showed improvements in sensitivity that parallel behavioral effects. In contrast, neurons with opposite preferences showed diminished sensitivity under cue combination. Responses of congruent cells were more strongly correlated with monkeys' perceptual decisions than were responses of opposite cells, suggesting that the monkey monitored the activity of congruent cells to a greater extent during cue integration. These findings show that perceptual cue integration occurs in nonhuman primates and identify a population of neurons that may form its neural basis.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
£139.00 per year
only £11.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Jacobs, R.A. Optimal integration of texture and motion cues to depth. Vision Res. 39, 3621–3629 (1999).
Hillis, J.M., Watt, S.J., Landy, M.S. & Banks, M.S. Slant from texture and disparity cues: optimal cue combination. J. Vis. 4, 967–992 (2004).
Knill, D.C. & Saunders, J.A. Do humans optimally integrate stereo and texture information for judgments of surface slant? Vision Res. 43, 2539–2558 (2003).
van Beers, R.J., Sittig, A.C. & Gon, J.J. Integration of proprioceptive and visual position-information: an experimentally supported model. J. Neurophysiol. 81, 1355–1364 (1999).
Ernst, M.O. & Banks, M.S. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415, 429–433 (2002).
Alais, D. & Burr, D. The ventriloquist effect results from near-optimal bimodal integration. Curr. Biol. 14, 257–262 (2004).
Molholm, S., Ritter, W., Javitt, D.C. & Foxe, J.J. Multisensory visual-auditory object recognition in humans: a high-density electrical mapping study. Cereb. Cortex 14, 452–465 (2004).
Yuille, A.L. & Bulthoff, H.H. Bayesian decision theory and psychophysics. in Perception as Bayesian Inference (eds., Knill, D. & Richards, W.) 123–161 (Cambridge University Press, Cambridge, 1996).
Mamassian, P., Landy, M.S. & Maloney, L.T. Bayesian modeling of visual perception. in Probabilistic Models of the Brain: Perception and Neural Function (eds., Rao, R.P.N., Olshausen, B.A. & Lewicki, M.S.) 13–36 (MIT Press, Cambridge, Massachusetts, 2002).
Knill, D.C. & Pouget, A. The Bayesian brain: the role of uncertainty in neural coding and computation. Trends Neurosci. 27, 712–719 (2004).
Stein, B.E. & Meredith, M.A. The Merging of the Senses (MIT Press, Cambridge, Massachusetts, 1993).
Felleman, D.J. & Van Essen, D.C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).
Ghazanfar, A.A. & Schroeder, C.E. Is neocortex essentially multisensory? Trends Cogn. Sci. 10, 278–285 (2006).
Wallace, M.T., Ramachandran, R. & Stein, B.E. A revised view of sensory cortical parcellation. Proc. Natl. Acad. Sci. USA 101, 2167–2172 (2004).
Stanford, T.R., Quessy, S. & Stein, B.E. Evaluating the operations underlying multisensory integration in the cat superior colliculus. J. Neurosci. 25, 6499–6508 (2005).
Sugihara, T., Diltz, M.D., Averbeck, B.B. & Romanski, L.M. Integration of auditory and visual communication information in the primate ventrolateral prefrontal cortex. J. Neurosci. 26, 11138–11147 (2006).
Avillac, M., Ben Hamed, S. & Duhamel, J.R. Multisensory integration in the ventral intraparietal area of the macaque monkey. J. Neurosci. 27, 1922–1932 (2007).
Wuerger, S.M., Hofbauer, M. & Meyer, G.F. The integration of auditory and visual motion signals at threshold. Percept. Psychophys. 65, 1188–1196 (2003).
Tanaka, K. et al. Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey. J. Neurosci. 6, 134–144 (1986).
Tanaka, K., Fukada, Y. & Saito, H.A. Underlying mechanisms of the response specificity of expansion/contraction and rotation cells in the dorsal part of the medial superior temporal area of the macaque monkey. J. Neurophysiol. 62, 642–656 (1989).
Duffy, C.J. & Wurtz, R.H. Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. J. Neurophysiol. 65, 1329–1345 (1991).
Duffy, C.J. & Wurtz, R.H. Response of monkey MST neurons to optic flow stimuli with shifted centers of motion. J. Neurosci. 15, 5192–5208 (1995).
Duffy, C.J. MST neurons respond to optic flow and translational movement. J. Neurophysiol. 80, 1816–1827 (1998).
Page, W.K. & Duffy, C.J. Heading representation in MST: sensory interactions and population encoding. J. Neurophysiol. 89, 1994–2013 (2003).
Gu, Y., Watkins, P.V., Angelaki, D.E. & DeAngelis, G.C. Visual and nonvisual contributions to three-dimensional heading selectivity in the medial superior temporal area. J. Neurosci. 26, 73–85 (2006).
Takahashi, K. et al. Multimodal coding of three-dimensional rotation and translation in area MSTd: comparison of visual and vestibular selectivity. J. Neurosci. 27, 9742–9756 (2007).
Bremmer, F., Kubischik, M., Pekel, M., Lappe, M. & Hoffmann, K.P. Linear vestibular self-motion signals in monkey medial superior temporal area. Ann. NY Acad. Sci. 871, 272–281 (1999).
Ma, W.J., Beck, J.M., Latham, P.E. & Pouget, A. Bayesian inference with probabilistic population codes. Nat. Neurosci. 9, 1432–1438 (2006).
Gu, Y., Deangelis, G.C. & Angelaki, D.E. A functional link between area MSTd and heading perception based on vestibular signals. Nat. Neurosci. 10, 1038–1047 (2007).
Wichmann, F.A. & Hill, N.J. The psychometric function. I. Fitting, sampling and goodness of fit. Percept. Psychophys. 63, 1293–1313 (2001).
Britten, K.H., Shadlen, M.N., Newsome, W.T. & Movshon, J.A. The analysis of visual motion: a comparison of neuronal and psychophysical performance. J. Neurosci. 12, 4745–4765 (1992).
Green, D.M. & Swets, J.A. Signal Detection Theory and Psychophysics (Wiley, New York, 1966).
Parker, A.J. & Newsome, W.T. Sense and the single neuron: probing the physiology of perception. Annu. Rev. Neurosci. 21, 227–277 (1998).
Britten, K.H., Newsome, W.T., Shadlen, M.N., Celebrini, S. & Movshon, J.A. A relationship between behavioral choice and the visual responses of neurons in macaque MT. Vis. Neurosci. 13, 87–100 (1996).
Krug, K. A common neuronal code for perceptual processes in visual cortex? Comparing choice and attentional correlates in V5/MT. Phil. Trans. R. Soc. Lond. B 359, 929–941 (2004).
Purushothaman, G. & Bradley, D.C. Neural population code for fine perceptual decisions in area MT. Nat. Neurosci. 8, 99–106 (2005).
Shadlen, M.N., Britten, K.H., Newsome, W.T. & Movshon, J.A. A computational analysis of the relationship between neuronal and behavioral responses to visual motion. J. Neurosci. 16, 1486–1510 (1996).
Nienborg, H. & Cumming, B.G. Psychophysically measured task strategy for disparity discrimination is reflected in V2 neurons. Nat. Neurosci. 10, 1608–1614 (2007).
Nienborg, H. & Cumming, B.G. Macaque V2 neurons, but not V1 neurons, show choice-related activity. J. Neurosci. 26, 9567–9578 (2006).
Dodd, J.V., Krug, K., Cumming, B.G. & Parker, A.J. Perceptually bistable three-dimensional figures evoke high choice probabilities in cortical area MT. J. Neurosci. 21, 4809–4821 (2001).
Celebrini, S. & Newsome, W.T. Neuronal and psychophysical sensitivity to motion signals in extrastriate area MST of the macaque monkey. J. Neurosci. 14, 4109–4124 (1994).
Uka, T. & DeAngelis, G.C. Contribution of area MT to stereoscopic depth perception: choice-related response modulations reflect task strategy. Neuron 42, 297–310 (2004).
Parker, A.J., Krug, K. & Cumming, B.G. Neuronal activity and its links with the perception of multi-stable figures. Phil. Trans. R. Soc. Lond. B 357, 1053–1062 (2002).
Tanaka, K., Sugita, Y., Moriya, M. & Saito, H. Analysis of object motion in the ventral part of the medial superior temporal area of the macaque visual cortex. J. Neurophysiol. 69, 128–142 (1993).
Van Essen, D.C., Maunsell, J.H. & Bixby, J.L. The middle temporal visual area in the macaque: myeloarchitecture, connections, functional properties and topographic organization. J. Comp. Neurol. 199, 293–326 (1981).
Komatsu, H. & Wurtz, R.H. Relation of cortical areas MT and MST to pursuit eye movements. III. Interaction with full-field visual stimulation. J. Neurophysiol. 60, 621–644 (1988).
Komatsu, H. & Wurtz, R.H. Relation of cortical areas MT and MST to pursuit eye movements. I. Localization and visual properties of neurons. J. Neurophysiol. 60, 580–603 (1988).
Desimone, R. & Ungerleider, L.G. Multiple visual areas in the caudal superior temporal sulcus of the macaque. J. Comp. Neurol. 248, 164–189 (1986).
Acknowledgements
We thank A. Turner and E. White for monkey care and training, M.S. Banks for helpful advice, and L. Snyder, A. Pouget and R. Moreno Bote for comments on an earlier version of the manuscript. This work was supported by US National Institutes of Health grants EY017866 (to D.E.A.) and EY016178 and an EJLB Foundation grant (to G.C.D.).
Author information
Authors and Affiliations
Contributions
Y.G., D.E.A. and G.C.D. designed the experiments. Y.G. collected the data and performed data analyses. Y.G., D.E.A. and G.C.D. refined the analyses and wrote the paper.
Corresponding author
Supplementary information
Supplementary Text and Figures
Supplementary Figures 1–12 and Supplementary Methods (PDF 4045 kb)
Rights and permissions
About this article
Cite this article
Gu, Y., Angelaki, D. & DeAngelis, G. Neural correlates of multisensory cue integration in macaque MSTd. Nat Neurosci 11, 1201–1210 (2008). https://doi.org/10.1038/nn.2191
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nn.2191