[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Validation of noise models for single-cell transcriptomics

Abstract

Single-cell transcriptomics has recently emerged as a powerful technology to explore gene expression heterogeneity among single cells. Here we identify two major sources of technical variability: sampling noise and global cell-to-cell variation in sequencing efficiency. We propose noise models to correct for this, which we validate using single-molecule FISH. We demonstrate that gene expression variability in mouse embryonic stem cells depends on the culture condition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of gene expression noise with single-cell mRNA sequencing.
Figure 2: Modeling of technical variability and inference of biological noise.
Figure 3: Validation of predicted biological variability by smFISH.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Munsky, B., Neuert, G. & van Oudenaarden, A. Science 336, 183–187 (2012).

    Article  CAS  Google Scholar 

  2. Eldar, A. & Elowitz, M.B. Nature 467, 167–173 (2010).

    Article  CAS  Google Scholar 

  3. Hashimshony, T., Wagner, F., Sher, N. & Yanai, I. Cell Rep. 2, 666–673 (2012).

    Article  CAS  Google Scholar 

  4. Sasagawa, Y. et al. Genome Biol. 14, R31 (2013).

    Article  Google Scholar 

  5. Tang, F. et al. Nat. Methods 6, 377–382 (2009).

    Article  CAS  Google Scholar 

  6. Ramsköld, D. et al. Nat. Biotechnol. 30, 777–782 (2012).

    Article  Google Scholar 

  7. Islam, S. et al. Genome Res. 21, 1160–1167 (2011).

    Article  CAS  Google Scholar 

  8. Picelli, S. et al. Nat. Methods 10, 1096–1098 (2013).

    Article  CAS  Google Scholar 

  9. Shapiro, E., Biezuner, T. & Linnarsson, S. Nat. Rev. Genet. 14, 618–630 (2013).

    Article  CAS  Google Scholar 

  10. Kivioja, T. et al. Nat. Methods 9, 72–74 (2012).

    Article  CAS  Google Scholar 

  11. Shiroguchi, K., Jia, T.Z., Sims, P.A. & Xie, X.S. Proc. Natl. Acad. Sci. USA 109, 1347–1352 (2012).

    Article  CAS  Google Scholar 

  12. Hug, H. & Schuler, R. J. Theor. Biol. 221, 615–624 (2003).

    Article  CAS  Google Scholar 

  13. Shalek, A.K. et al. Nature 498, 236–240 (2013).

    Article  CAS  Google Scholar 

  14. Islam, S. et al. Nat. Methods 11, 163–166 (2014).

    Article  CAS  Google Scholar 

  15. Jaitin, D.A. et al. Science 343, 776–779 (2014).

    Article  CAS  Google Scholar 

  16. Brennecke, P. et al. Nat. Methods 10, 1093–1095 (2013).

    Article  CAS  Google Scholar 

  17. Ying, Q.-L. et al. Nature 453, 519–523 (2008).

    Article  CAS  Google Scholar 

  18. The External RNA Controls Consortium. Nat. Methods 2, 731–734 (2005).

  19. Raj, A., Peskin, C.S., Tranchina, D., Vargas, D.Y. & Tyagi, S. PLoS Biol. 4, e309 (2006).

    Article  Google Scholar 

  20. Raj, A., van den Bogaard, P., Rifkin, S.A., van Oudenaarden, A. & Tyagi, S. Nat. Methods 5, 877–879 (2008).

    Article  CAS  Google Scholar 

  21. Li, H. & Durbin, R. Bioinformatics 26, 589–595 (2010).

    Article  Google Scholar 

  22. Meyer, L.R. et al. Nucleic Acids Res. 41, D64–D69 (2013).

    Article  CAS  Google Scholar 

  23. Anders, S. & Huber, W. Genome Biol. 11, R106 (2010).

    Article  CAS  Google Scholar 

  24. Robinson, M.D., McCarthy, D.J. & Smyth, G.K. Bioinformatics 26, 139–140 (2010).

    Article  CAS  Google Scholar 

  25. Byrd, R.H., Lu, P., Nocedal, J. & Zhu, C. SIAM J. Sci. Comput. 16, 1190–1208 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a European Research Council Advanced grant (ERC-AdG 294325-GeneNoiseControl) and a Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) Vici award.

Author information

Authors and Affiliations

Authors

Contributions

D.G., L.K. and A.v.O. conceived the methods. D.G. developed the noise models, performed all computations and wrote the manuscript. L.K. performed all experiments and corrected the manuscript. A.v.O. guided experiments, data analysis and writing of the manuscript, and corrected the manuscript.

Corresponding author

Correspondence to Alexander van Oudenaarden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–15, Supplementary Table 1 and Supplementary Notes 1–4. (PDF 11686 kb)

Supplementary Table 2

GO terms enriched among genes with increased expression variability in serum versus 2i culture condition. Enriched biological processes and enriched molecular functions are given as separate lists. Only significantly enriched GO-terms (P < 0.05) were included. The lists indicate the GO-term ID, the hypergeometric P-value, the odds ratio, the expected number of genes associated with each GO-term, the observed number of genes for each GO-term, the size of the GO-term (total number of genes associated) and a short description. For the inference of over-represented GO terms, the set of differentially variable genes was compared to the universe of all genes expressed in the two conditions. The GOstats package was used to compute GO enrichment in R. (XLSX 82 kb)

Supplementary Table 3

Probe set composition of smFISH probes used. Each column represents a probe set for the gene specified in the column header. All probes were labeled on the 3' end with TMR, Alexa594 or Cy5. (XLSX 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grün, D., Kester, L. & van Oudenaarden, A. Validation of noise models for single-cell transcriptomics. Nat Methods 11, 637–640 (2014). https://doi.org/10.1038/nmeth.2930

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2930

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing