Abstract
In the domain of health, one important challenge is the efficient delivery of drugs in the body using non-toxic nanocarriers. Most of the existing carrier materials show poor drug loading (usually less than 5 wt% of the transported drug versus the carrier material) and/or rapid release of the proportion of the drug that is simply adsorbed (or anchored) at the external surface of the nanocarrier. In this context, porous hybrid solids, with the ability to tune their structures and porosities for better drug interactions and high loadings, are well suited to serve as nanocarriers for delivery and imaging applications. Here we show that specific non-toxic porous iron(III)-based metal–organic frameworks with engineered cores and surfaces, as well as imaging properties, function as superior nanocarriers for efficient controlled delivery of challenging antitumoural and retroviral drugs (that is, busulfan, azidothymidine triphosphate, doxorubicin or cidofovir) against cancer and AIDS. In addition to their high loadings, they also potentially associate therapeutics and diagnostics, thus opening the way for theranostics, or personalized patient treatments.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
£169.00 per year
only £14.08 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotech. 2, 751–760 (2007).
Couvreur, P., Gref, R., Andrieux, K. & Malvy, C. Nanotechnology for drug delivery: Applications to cancer and autoimmune diseases. Prog. Solid State Chem. 34, 231–235 (2006).
Gref, R. et al. Biodegradable long-circulating polymeric nanospheres. Science 263, 1600–1603 (1994).
Gabizon, A. Stealth liposomes and tumor targeting: One step further in the quest for the magic bullet. Clin. Cancer Res. 7, 223–225 (2001).
Sheikh Hasan, A. et al. Effect of the microencapsulation of nanoparticles on the reduction of burst release. Int. J. Pharm. 344, 53–61 (2007).
Horcajada, P. et al. Metal–organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed. 45, 5974–5978 (2006).
Horcajada, P. et al. Flexible porous metal–organic frameworks for a controlled drug delivery. J. Am. Chem. Soc. 130, 6774–6780 (2008).
Hinks, N. J., McKinlay, A. C., Xiao, B., Wheatley, P. S. & Morris, R. E. Metal organic frameworks as NO delivery materials for biological applications. Microporous Mesoporous Mater. 10.1016/j.micromeso.2009.04.031 (2009) (in the press).
Xiao, B. et al. Chemically blockable transformation and ultraselective low-pressure gas adsorption in a non-porous metal organic framework. Nature Chem. 1, 289–294 (2009).
Rieter, W. J., Pott, K. M., Taylor, K. M. L. & Lin, W. Nanoscale coordination polymers for platinum-based anticancer drug delivery. J. Am. Chem. Soc. 130, 11584–11585 (2008).
Rieter, W. J., Taylor, K. M. L., An, H. & Lin, W. Nanoscale metal–organic frameworks as potential multimodal contrast enhancing agents. J. Am. Chem. Soc. 128, 9024–9025 (2006).
Taylor, K. M. L., Jin, A. & Lin, W. Surfactant-assisted synthesis of nanoscale gadolinium metal–organic-framework for potential multimodal imaging. Angew. Chem. Int. Ed. 47, 7722–7725 (2008).
Taylor, K. M. L., Rieter, W. J. & Lin, W. Manganese-based nanoscale metal–organic frameworks for magnetic resonance imaging. J. Am. Chem. Soc. 130, 14358–14359 (2008).
Férey, G. Hybrid porous solids: Past, present, future. Chem. Soc. Rev. 37, 191–241 (2008).
Jhung, S. H. et al. Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability. Adv. Mater. 19, 121–124 (2007).
Hermes, S. et al. Selective nucleation and growth of metal–organic open framework thin films on patterned COOH/CF3-terminated self-assembled monolayers on Au(111). J. Am. Chem. Soc. 127, 13744–13745 (2005).
Scherb, C. & Bein, T. Directing the structure of metal–organic frameworks by oriented surface growth on an organic monolayer. Angew. Chem. Int. Ed. 47, 5777–5779 (2008).
Llewellyn, P. L. et al. High uptakes of CO2 and CH4 in mesoporous metal–organic-frameworks MIL-100 and MIL-101. Langmuir 24, 7245–7250 (2008).
Horcajada, P., Serre, C., Gref, R., Férey, G. & Couvreur, P. Nanoparticules hybrides organiques inorganiques à base de carboxylates de fer, PCT applications PCT/FR2008/001366, 01 October 2008.
Horcajada, P., Serre, C., Gref, R., Férey, G. & Couvreur, P. Solides hybrides organique–inorganique à surface modifiée, PCT applications PCT/FR2008/001367, 01 October 2008.
Férey, G. & Serre, C. Large breathing effects in three-dimensional porous hybrid matter: Facts, analyses, rules and consequences. Chem. Soc. Rev. 38, 1380–1399 (2009).
Serre, C. et al. Role of solvent-host interactions that lead to very large swelling of hybrid frameworks. Science 315, 1828–w1831 (2007).
Serre, C. et al. A route to the synthesis of trivalent transition-metal porous carboxylates with trimeric secondary building units. Angew. Chem. Int. Ed. 43, 6285–6289 (2004).
Surblé, S. et al. A new isoreticular class of metal–organic-frameworks with the MIL-88 topology. Chem. Commun. 3, 284–286 (2006).
Whitfield, T. R., Wang, X., Liu, L. & Jacobson, A. J. Metal-organic frameworks based on iron oxide octahedral chains connected by benzenedicarboxylate dianions. Solid State Sci. 7, 1096–1103 (2005).
Horcajada, P. et al. Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores. Chem. Commun. 27, 2820–2822 (2007).
Bauer, S. et al. High-throughput assisted rationalization or the formation of metal–organic framework in the iron(III) aminoterephthalate solvothermal system. Inorg. Chem. 47, 7568–7576 (2008).
Gref, R. et al. The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv. Drug Deliv. Rev. 16, 215–233 (1995).
Sheftel, V. O. Indirect Food Additives and Polymers: Migration and Toxicology 148–154 (Lewis Publishers, 2000).
<http://www.chem.unep.ch/irptc/sids/OECDSIDS/100-21-0.pdf> (2008).
<http://www.chemicalland21.com/specialtychem/perchem/TRIMESIC%20ACID.htm> (2008).
<http://www.sciencelab.com/xMSDS-Fumaric_acid-9927173> (2008).
Mosmann, T. Rapid colourimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63 (1983).
Soma, C. E. et al. Drug delivery to resistance tumors: The potential of poly(alkyl cyanoacrylate) nanoparticles. J. Control. Release 68, 283–289 (2000).
Vassal, G. et al. Is 600 mg m−2 the appropriate dosage of busulfan in children undergoing bone marrow transplantation? Blood 79, 2475–2479 (1992).
Vassal, G. et al. Pharmacokinetics of high-dose busulfan in children. Cancer Chemother. Pharmacol. 24, 386–390 (1989).
Slattery, T. et al. Graft-rejection and toxicity following bone marrow transplantation in relation to busulfan pharmacokinetics. Bone Marrow Transplant. 16, 31–42 (1995).
Layre, A., Gref, R., Richard, J., Requier, D. & Couvreur, P. Nanoparticules polymériques composites, FR 04 07569, 7 July 2004.
Hassan, Z., Nilsson, C. & Hassan, M. Liposomal busulphan: Bioavailability and effect on bone marrow in mice. Bone Marrow Transplant. 22, 913–918 (1998).
Madden, T. et al. Pharmacokinetics of once-daily IV busulfan as part of pretransplantation preparative regimens: A comparison with an every 6-hour dosing schedule. Biol. Blood Marrow Transplant. 13, 56–64 (2007).
Thierry, A. R. et al. Modulation of doxorubicin resistance in multidrug-resistant cells by liposomes. FASEB J. 7, 572–579 (1993).
Loke, S. L. et al. Characterization of oligonucleotide transport into living cells. Proc. Natl Acad. Sci. USA 86, 3474–3478 (1989).
Kukhanova, M. et al. Design of anti-HIV compounds: From nucleoside to nucleoside 5′-triphosphate analogs. Problems and perspectives. Curr. Pharm. Des. 6, 585–598 (2000).
Hillaireau, H. et al. Encapsulation of antiviral nucleotide analogues azidothymidine-triphosphate and cidofovir in poly(iso-butylcyanoacrylate) nanocapsules. Int. J. Pharm. 324, 37–42 (2006).
Roch, A. et al. Theory of proton relaxation induced by superparamagnetic particles. J. Chem. Phys. 110, 5403–5411 (1999).
Muller, R. N. et al. in The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging (eds Merbach, A. E. & Tóth, É.) 417–435 (Wiley, 2001).
Acknowledgements
We acknowledge E. Legenre, M. Belle, F. Kani, C. Bellanger and E. Jubeli for their help with the experiments. We are grateful to J-M. Greneche, H. Chacun, M. Apple, C. Bories, H.Hillarieu, and O. David for their collaboration. We thank K. Storck, V. Huyot and R. Yousfi for their technical assistance with the AZT-TP experiments.
This work was partially supported by the CNRS, Université Paris Sud, Université de Versailles Saint-Quentin, EU funding through the ERC-2007-209241-BioMOFs, ERC and KOCI through the Institutional Research Program of KRICT. KRICT’s authors thank You-Kyong Seo for his experimental assistance.
Author information
Authors and Affiliations
Contributions
P.H., nanoMOF synthesis, surface modification of nanoparticles, drug and cosmetic encapsulation tests, toxicity assays, degradation tests,in vivo magnetic resonance imaging; C. Serre, nanoMOF synthesis, surface modification of nanoparticles, drug and cosmetic encapsulation tests, degradation tests, imaging applications; T.C., nanoMOF synthesis, PEG modification, drug encapsulation and delivery, in vitro toxicity assays, degradation tests, in vitro magnetic resonance imaging; B.G. and C. Sebrie, imaging applications; T.B., in vivo toxicity assays, nanoMOF degradation tests, doxorubicin encapsulation and delivery; J.F.E., nanoMOF degradation tests; D.H., synthesis of nanoparticles of MIL-101 _NH2; P. Clayette and C.K., anti-HIV activity of MIL-100 nanoparticles; J.-S.C. and Y.K.H., synthesis of nanoparticles of MIL-100 and MIL-53 in water; V.M., busulfan activity tests; P.-N.B. and L.C., liver function evaluation in the in vivo toxicity assays; S.G., activity of Cyp-450 in the in vivo toxicity assays; G.F., nanoMOF synthesis, surface modification of nanoparticles; P. Couvreur, drug encapsulation and delivery, toxicity assays, surface modification of nanoparticles; R.G., drug encapsulation and delivery, toxicity assays, surface modification of nanoparticles, imaging applications.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 3575 kb)
Rights and permissions
About this article
Cite this article
Horcajada, P., Chalati, T., Serre, C. et al. Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature Mater 9, 172–178 (2010). https://doi.org/10.1038/nmat2608
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat2608