[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

In vivo imaging of hydrogen peroxide with chemiluminescent nanoparticles

Abstract

The overproduction of hydrogen peroxide is implicated in the development of numerous diseases1,2,3,4 and there is currently great interest in developing contrast agents that can image hydrogen peroxide in vivo. In this report, we demonstrate that nanoparticles formulated from peroxalate esters and fluorescent dyes can image hydrogen peroxide in vivo with high specificity and sensitivity. The peroxalate nanoparticles image hydrogen peroxide by undergoing a three-component chemiluminescent reaction between hydrogen peroxide, peroxalate esters and fluorescent dyes. The peroxalate nanoparticles have several attractive properties for in vivo imaging, such as tunable wavelength emission (460–630 nm), nanomolar sensitivity for hydrogen peroxide and excellent specificity for hydrogen peroxide over other reactive oxygen species. The peroxalate nanoparticles were capable of imaging hydrogen peroxide in the peritoneal cavity of mice during a lipopolysaccharide-induced inflammatory response. We anticipate numerous applications of peroxalate nanoparticles for in vivo imaging of hydrogen peroxide, given their high specificity and sensitivity and deep-tissue-imaging capability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Peroxalate nanoparticles—a new strategy for imaging hydrogen peroxide in vivo.
Figure 2: Peroxalate nanoparticles have high sensitivity and specificity for hydrogen peroxide, and also tunable emission wavelengths.
Figure 3: In vivo imaging of exogenous hydrogen peroxide using peroxalate nanoparticles.
Figure 4: In vivo imaging of endogenous hydrogen peroxide in the peritoneal cavity of mice, during an LPS-induced inflammatory response, using peroxalate nanoparticles.

Similar content being viewed by others

References

  1. Lim, S. D. et al. Increased Nox1 and hydrogen peroxide in prostate cancer. Prostate 62, 200–207 (2005).

    Article  CAS  Google Scholar 

  2. Chang, M. C. Y., Pralle, A., Isacoff, E. Y. & Chang, C. J. A selective, cell-permeable optical probe for hydrogen peroxide in living cells. J. Am. Chem. Soc. 126, 15392–15393 (2004).

    Article  CAS  Google Scholar 

  3. Miller, E. W., Albers, A. E., Pralle, A., Isacoff, E. Y. & Chang, C. J. Boronate-based fluorescent probes for imaging cellular hydrogen peroxide. J. Am. Chem. Soc. 127, 16652–16659 (2005).

    Article  CAS  Google Scholar 

  4. Albers, A. E., Okreglak, V. S. & Chang, C. J. A FRET-based approach to ratiometric fluorescence detection of hydrogen peroxide. J. Am. Chem. Soc. 128, 9640–9641 (2006).

    Article  CAS  Google Scholar 

  5. Wu, M., Lin, Z. H., Schaferling, M., Durkop, A. & Wolfbeis, O. S. Fluorescence imaging of the activity of glucose oxidase using a hydrogen-peroxide-sensitive europium probe. Anal. Biochem. 340, 66–73 (2005).

    Article  CAS  Google Scholar 

  6. Wolfbeis, O. S., Schaferling, M. & Durkop, A. Reversible optical sensor membrane for hydrogen peroxide using an immobilized fluorescent probe, and its application to a glucose biosensor. Microchim. Acta 143, 221–227 (2003).

    Article  CAS  Google Scholar 

  7. Soh, N. Recent advances in fluorescent probes for the detection of reactive oxygen species. Anal. Bioanal. Chem. 386, 532–543 (2006).

    Article  CAS  Google Scholar 

  8. Troy, T., Jekic-McMullen, D., Sambucetti, L. & Rice, B. Quantitative comparison of the sensitivity fo detection of fluorescent and bioluminescent reporters in animal models. Mol. Imag. 3, 9–23 (2004).

    Article  CAS  Google Scholar 

  9. Rice, B. W., Cable, M. D. & Nelson, M. B. In vivo imaging of light-emitting probes. J. Biomed. Opt. 6, 432–440 (2001).

    Article  CAS  Google Scholar 

  10. Chen, W.-T. & Ralph Weissleder, C.-H. T. Imaging reactive oxygen species in arthritis. Mol. Imag. 3, 159–162 (2004).

    Article  CAS  Google Scholar 

  11. Hosaka, S., Itagaki, T. & Kuramitsu, Y. Selectivity and sensitivity in the measurement of reactive oxygen species (ROS) using chemiluminescent microspheres prepared by the binding of acridinium ester or ABEI to polymer microspheres. Luminescence 14, 349–354 (1999).

    Article  CAS  Google Scholar 

  12. Rauhut, M. M., Roberts, B. G., Maulding, D. R., Bergmark, W. & Coleman, R. Infrared liquid-phase chemiluminescence from reactions of bis(2,4,6-trichlorophenyl) oxalate, hydrogen-peroxide, and infrared fluorescent compounds. J. Org. Chem. 40, 330–335 (1975).

    Article  CAS  Google Scholar 

  13. Arnous, A., Petrakis, C., Makris, D. P. & Kefalas, P. A peroxyoxalate chemiluminescence-based assay for the evaluation of hydrogen peroxide scavenging activity employing 9,10-diphenylanthracene as the fluorophore. J. Pharm. Toxicol. Methods 48, 171–177 (2002).

    Article  CAS  Google Scholar 

  14. Hadd, A. G., Lehmpuhl, D. W., Kuck, L. R. & Birks, J. W. Chemiluminescence demonstration illustrating principles of ester hydrolysis reactions. J. Chem. Educ. 76, 1237–1240 (1999).

    Article  CAS  Google Scholar 

  15. Motoyoshiya, J. et al. Peroxyoxalate chemiluminescence of N,N′-bistosyl-1H,4H-quinoxaline-2,3-dione and related compounds. Dependence on electronic nature of fluorophores. J. Org. Chem. 67, 7314–7318 (2002).

    Article  CAS  Google Scholar 

  16. Gubitz, G., Vanzoonen, P., Gooijer, C., Velthorst, N. H. & Frei, R. W. Immobilized fluorophores in dynamic chemi-luminescence detection of hydrogen-peroxide. Anal. Chem. 57, 2071–2074 (1985).

    Article  CAS  Google Scholar 

  17. Koike, R., Kato, Y., Motoyoshiya, J., Nishii, Y. & Aoyama, H. Unprecedented chemiluminescence behaviour during peroxyoxalate chemiluminescence of oxalates with fluorescent or electron-donating aryloxy groups. Luminescence 21, 164–173 (2006).

    Article  CAS  Google Scholar 

  18. Tsunoda, M. & Imai, K. Analytical applications of peroxyoxalate chemiluminescence. Anal. Chim. Acta 541, 13–23 (2005).

    Article  CAS  Google Scholar 

  19. Stevani, C. V., Silva, S. M. & Baader, W. J. Studies on the mechanism of the excitation step in peroxyoxalate chemiluminescence. Eur. J. Org. Chem. 4037–4046 (2000).

  20. Matsumoto, M. Advanced chemistry of dioxetane-based chemiluminescent substrates originating from bioluminescence. J. Photochem. Photobiol. C 5, 27–53 (2004).

    Article  CAS  Google Scholar 

  21. Schuster, G. B. Chemi-luminescence of organic peroxides—conversion of ground-state reactants to excited-state products by the chemically-initiated electron-exchange luminescence mechanism. Acc. Chem. Res. 12, 366–373 (1979).

    Article  CAS  Google Scholar 

  22. Hilderbrand, S. A., Kelly, K. A., Weissleder, R. & Tung, C. H. Monofunctional near-infrared fluorochromes for imaging applications. Bioconjug. Chem. 16, 1275–1281 (2005).

    Article  CAS  Google Scholar 

  23. Polytarchou, C., Hatziapostolou, M. & Papadimitriou, E. Hydrogen peroxide stimulates proliferation and migration of human prostate cancer cells through activation of activator protein-1 and up-regulation of the heparin affin regulatory peptide gene. J. Biol. Chem. 280, 40428–40435 (2005).

    Article  CAS  Google Scholar 

  24. Laurent, A. et al. Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res. 65, 948–956 (2005).

    CAS  Google Scholar 

  25. Stone, J. R. & Collins, T. The role of hydrogen peroxide in endothelial proliferative responses. Endothelium-New York 9, 231–238 (2002).

    Article  CAS  Google Scholar 

  26. Mohler, D. L. & Shell, T. A. The hydrogen peroxide induced enhancement of DNA cleavage in the ambient light photolysis of CpFe(CO)(2)Ph: A potential strategy for targeting cancer cells. Bioorg. Med. Chem. Lett. 15, 4585–4588 (2005).

    Article  CAS  Google Scholar 

  27. Hirpara, J. L., Clement, M. V. & Pervaiz, S. Intracellular acidification triggered by mitochondrial-derived hydrogen peroxide is an effector mechanism for drug-induced apoptosis in tumor cells. J. Biol. Chem. 276, 514–521 (2001).

    Article  CAS  Google Scholar 

  28. Sredni-Kenigsbuch, D., Kambayashi, T. & Strassmann, G. Neutrophils augment the release of TNF alpha from LPS-stimulated macrophages via hydrogen peroxide. Immunol. Lett. 71, 97–102 (2000).

    Article  CAS  Google Scholar 

  29. Hikosaka, K. et al. Reduced lipopolysaccharide (LPS)-induced nitric oxide production in peritoneal macrophages and inhibited LPS-induced lethal shock in mice by a sugar cane (Saccharum officinarum L.) extract. Biosci. Biotechnol. Biochem. 70, 2853–2858 (2006).

    Article  CAS  Google Scholar 

  30. Chen, W. T., Mahmood, U., Weissleder, R. & Tung, C. H. Arthritis imaging using a near-infrared fluorescence folate-targeted probe. Arthritis Res. Ther. 7, R310–R317 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Georgia Tech/Emory Center for the Engineering of Living Tissues (funded by NSF-EEC-9731643) (N.M.), NSF-BES-0546962 Career Award (N.M.), NIH UO1 HL80711-01 (N.M.), NIH R21 EB006418 (N.M.), J&J/GT Health Care Innovation Seed Grant Proposal (N.M.) and NIH P01 HL58000 (W.R.T.). The authors would like to thank R. Dasari (Department of Chemistry, Georgia Institute of Technology) for nuclear magnetic resonance and Fourier transform infrared analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niren Murthy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures 1S-4S and table 1s (PDF 188 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, D., Khaja, S., Velasquez-Castano, J. et al. In vivo imaging of hydrogen peroxide with chemiluminescent nanoparticles. Nature Mater 6, 765–769 (2007). https://doi.org/10.1038/nmat1983

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1983

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing