Abstract
Fundamental issues remain unresolved regarding the possible contribution of viruses to vascular pathology, as well as the role of the immune system in regulating these processes. Here we demonstrate that infection of mice with γ-herpesvirus 68 (γHV68) provides a novel model for addressing these issues. Interferon-γ receptor-deficient (IFNγR−/−) mice died weeks to months after γHV68 infection from a severe large-vessel panarteritis. γHV68-infected B cell-deficient and normal weanling mice exhibited milder large-vessel arteritis. Immunohistochemical analyses demonstrated γHV68 antigen in arteritic lesions and revealed a striking tropism of γHV68 for smooth muscle cells. These studies demonstrate that IFN-γ is essential for control of chronic vascular pathology induced by γHV68 and suggest γ-herpesviruses as candidate etiologic agents for human vasculitis.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
£139.00 per year
only £11.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Weck, K.E., Barkon, M.L., Yoo, L.I., Speck, S.H. & Virgin, H.W. Mature B cells are required for acute splenic infection, but not for establishment of latency, by murine gammaherpesvirus 68. J. Virol. 70, 6775–6780 (1996).
Virgin, H.W. et al. Complete sequence and genomic analysis of murine gammaherpesvirus 68. J. Virol. 71, 5894–5904 (1997).
Blaskovic, D., Stancekova, M., Svobodova, J. & Mistrikova, J. Isolation of five strains of herpesviruses from two species of free living small rodents. Acta Virol. 24, 468 (1980).
Mistrikova, J. & Blaskovic, D. Ecology of the murine alphaherpesvirus and its isolation from lungs of rodents in cell culture. Acta Virol. 29, 312–317 (1985).
Sunil-Chandra, N.P., Efstathiou, S., Arno, J. & Nash, A.A. Virological and pathological features of mice infected with murine gammaherpesvirus 68. J. Gen. Virol. 73, 2347–2356 (1992).
Ehtisham, S., Sunil-Chandra, N.P. & Nash, A.A. Pathogenesis of murine gammaherpesvirus infection in mice deficient in CD4 and CD8 T cells. J. Virol. 67, 5247–5252 (1993).
Sunil-Chandra, N.P., Efstathiou, S. & Nash, A.A. Murine gammaherpesvirus 68 establishes a latent infection in mouse B lymphocytes in vivo. J. Gen. Virol. 73, 3275–3279 (1992).
Sunil-Chandra, N.P., Arno, J., Fazakerley, J. & Nash, A.A. Lymphoproliferative disease in mice infected with murine gammaherpesvirus 68. Am. J. Pathol. 145, 818–826 (1994).
Usherwood, E.J., Stewart, J.P., Robertson, K., Allen, D.J. & Nash, A.A. Absence of splenic latency in murine gammaherpesvirus 68-infected B cell-deficient mice. J. Gen. Virol. 77 2819–2825 (1996).
Cardin, R.D., Brooks, J.W., Sarawar, S.R. & Doherty, P.C. Progressive loss of CD8+ T cell-mediated control of a gamma-herpesvirus in the absence of CD4+ T cells. J. Exp. Med. 184, 863–871 (1996).
Sarawar, S.R. et al. Cytokine production in the immune response to murine gammaherpesvirus 68. J. Virol. 70, 3264–3268 (1996).
Meraz, M.A. et al. Targeted disruption of the Stat 1 gene in mice reveals unexpected physiologic specificity of the JAK-STAT signalling pathway. Cell 84, 431–442 (1996).
Muller, U. et al. Functional role of type I and type II interferons in antiviral defense. Science 264, 1918–1921 (1994).
Sarawar, S.R. et al. Gamma interferon is not essential for recovery from acute infection with murine gammaherpesvirus 68. J. Virol. 71, 3916–3921 (1997).
Dutia, B.M., Clarke, C.J., Allen, D.J. & Nash, A.A. Pathological changes in the spleens of gamma interferon receptor-deficient mice infected with murine gammaherpesvirus: A role for CD8 T cells. J. Virol. 71, 4278–4283 (1997).
Lawn, R.M. et al. Atherogenesis in transgenic mice expressing human apolipoprotein (a). Nature 360, 670–672 (1992).
Plump, A.S. et al. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E deficient mice created by homologous recombination in ES cells. Cell 71, 343–353 (1992).
Zhang, S.H., Reddick, R.L., Piedrahita, J.A. & Maeda, N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258, 468–471 (1992).
Shi, C. et al. Immunologic basis of transplant-associated arteriosclerosis. Proc. Natl. Acad. Sci. USA 93, 4051–4056 (1996).
Geng, Y-J. et al. Expression of the macrophage scavenger receptor in atheroma: Relationship to immune activation and the T-cellcytokine interferon-gamma. Arterioscler. Thromb. Vasc. Biol. 15, 1995–2002 (1995).
Hansson, G.K., Hellstrand, M., Rymo, L., Rubbia, L. & Gabbiani, G. Interferon-gamma inhibits both proliferation and expression of differentiation-specific alpha-smooth muscle actin in arterial smooth muscle cells. J. Exp. Med. 170, 1595–1608 (1989).
Dalton, D.K. et al. Multiple defects of immune cell function in mice with disrupted interferon-gamma genes. Science 259, 1739–1741 (1993).
Fabricant, C.G., Hajjar, D.P., Minick, C.R. & Fabricant, J. Herpesvirus infection enhances cholesterol and cholesteryl ester accumulation in cultured arterial smooth muscle cells. Am. J. Pathol. 105, 176–184 (1981).
Hsu, H-Y., Nicholson, A.C., Pomerantz, K.B., Kaner, R.J. & Hajjar, D.P. Altered cholesterol trafficking in herpesvirus-infected arterial Cells: Evidence for viral protein kinase-mediated cholesterol accumulation. J. Biol. Chem. 270, 19630–19637 (1995).
Key, N.S. et al. Infection of vascular endothelial Cells with herpes simplex virus enhances tissue factor acticity and reduces thrombomodulin expression. Proc. Natl. Acad. Sci. USA 87, 7095–7099 (1990).
Etingin, O.R., Silverstein, R.L., Friedman, H.M. & Hajjar, D.P. Viral activation of the coagulation cascade: Molecular interactions at the surface of infected endothelial Cells. Cell 61, 657–662 (1990).
van Dam-Mieras, M.C.E. et al. The procoagulant response of cytomegalovirus infected endothelial Cells. Thromb. Haemostasis 68, 364–370 (1992).
Kerr, G.S. Takayasu's arteritis. Rheum. Dis. Clin. N. Am. 21, 1041–1058 (1995).
Siegel, R.J. Disorders of blood vessels, in Cardiovascular Disorders: Pathogenesis and Pathophysiology. (ed. Gravanis, M.B.) Ch. 17, 517–560 (Mosby-Year Book, St. Louis, MO, 1993).
Lie, J.T. The classification and diagnosis of vasculitis in large and medium-sized blood vessels. Pathol. Annu. 22, 125–162 (1987).
Greene, N., Baughman, R. & Kim, C. Takayasu's arteritis associated with interstitial lung disease and glomerulonephritis. Chest 89, 605–606 (1986).
Ross, R. The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature 362, 801–809 (1993).
Ridker, P.M., Cushman, M., Stamfer, M.J., Tracy, R.P. & Hennekens, C.H., Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N. Engl. J. Med. 336, 973–979 (1997).
Libby, P. & Hansson, G.K. Involvement of the immune system in human atherogenesis: Current knowledge and unanswered questions. Lab. Invest. 64, 5–15 (1991).
Stemme, S. & Hansson, G.K. Immune mechanisms in atherogenesis. Ann. Med. 26, 141–146 (1994).
Stemme, S. et al. T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc. Natl. Acad. Sci. USA 92, 3893–3897 (1995).
Shih, J.C.H. & Keleman, D.W. Possible roles of viruses in atherosclerosis. Adv. Exp. Med. Biol. 369, 89–98 (1995).
Melnick, J.L., Adam, E. & DeBakey, M.E. Cytomegalovirus and atherosclerosis. BioEssays 17, 899–903 (1995).
Grattan, M.T. et al. Cytomegalovirus infection is associated with cardiac allograft rejection and atherosclerosis. JAMA 261, 3561–3566 (1989).
McDonald, K., Rector, T.S., Braunlin, E.A., Kubo, S.H. & Olivari, M.T. Association of coronary artery disease in cardiac transplant recipients with cytomegalovirus infection. Am. J. Cardiol. 64, 359–362 (1989).
Dummer, S. et al. Investigation of cytomegalovirus infection as a risk factor for coronary atherosclerosis in the explanted hearts of patients undergoing heart transplantation. J. Med. Virol. 44, 305–309 (1994).
Sorlie, P.D. et al. Cytomegalovirus/herpesvirus and carotid atherosclerosis: The ARIC study. J. Med. Virol. 42, 33–37 (1994).
Benditt, E.P., Barrett, T. & McDougall, J.K. Viruses in the etiology of atherosclerosis. Proc. Natl. Acad. Sci. USA 80, 6386–6389 (1983).
Visser, M.R. & VerCellotti, G.M. Herpes simplex virus and atherosclerosis. Eur. Heart J. 14, 39–42 (1993).
Raza-Ahmad, A. et al. Evidence of type 2 herpes simplex infection in human coronary arteries at the time of coronary artery bypass surgery. Can. J. Cardiol. 11, 1025–1029 (1995).
Hendrix, M.G.R., Salimans, M.M.M., van Boven, C.P.A. & Bruggeman, C.A. High prevalence of latently present cytomegalovirus in arterial walls of patients suffering from grade III atherosclerosis. Am. J. Pathol. 136, 23–28 (1990).
Yamashiroya, H.M., Ghosh, L., Yang, R. & Robertson, A.L.J. Herpesviridae in the coronary arteries and aorta of young trauma victims. Am. J. Pathol. 130, 71–79 (1988).
Hendrix, M.G., Dormans, P.H., Kitslaar, P., Bosman, F. & Bruggeman, C.A. The presence of cytomegalovirus nucleic acids in arterial walls of atherosclerotic and nonatherosclerotic patients. Am. J. Pathol. 134, 1151–1157 (1989).
Tanaka, S. et al. Possible role of cytomegalovirus in the pathogenesis of inflammatory aortic diseases: A preliminary report. J. Vasc. Surg. 16, 274–279 (1992).
Hendrix, M.G.R., Daemen, M. & Bruggeman, C.A. Cytomegalovirus nucleic acid distribution within the human vascular tree. Am. J. Pathol. 138, 563–567 (1991).
Fabricant, C.G. Antherosclerosis: The consequence of infection with a herpesvirus. Adv. Vet. Sci. Comp. Med. 30, 39–66 (1985).
Shih, J.C.H., Pyrzak, R. & Guy, J.S. Discovery of noninfectious viral genes complementary to Marek's disease herpesvirus in quail susceptible to cholesterol-induced atherosclerosis. J. Nutr. 119, 294–298 (1989).
Dangler, C.A. Baker S.E., Njenga M.K. & Chia S.H. Murine cytomegalovirus-associated arteritis. Vet. Pathol. 32, 127–133 (1995).
Persoons, M.C.J., Daemen, M.J.A.P., Bruning, J.H. & Bruggeman, C.A. Active cytomegalovirus infection of arterial smooth muscle Cells in immunocompromised rats: A clue to herpesvirus-associated atherogenesis? Circ. Res. 75, 214–220 (1994).
Koller, B.H., Marrack, P., Kappler, J.W. & Smithies, O. Normal development of mice deficient in beta 2M, MHC class I proteins, and CD8+ T Cells. Science 248, 1227–1230 (1990).
Kitamura, D., Roes, J., Kuhn, R. & Rajewsky, K. A B Cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature 350, 423–426 (1991).
Paigen, B., Morrow, A., Brandon, C., Mitchell, D. & Holmes, P. Variation in susceptibility to atherosclerosis among inbred strains of mice. Atherosclerosis 57, 65–73 (1985).
Shindler, K.S. & Roth, K.A. Double immunofluorescent staining using two unconjugated primary antisera raised in the same species. J. Histochem. Cytochem. 44, 1331–1335 (1996).
Tsukada, T., Tippins, D., Gordon, D., Ross, R. & Gown, A.M. HHF35, a muscle-actin-specific monoclonal antibody. I. Immunocytochemical and biochemical characterization. Am. J. Pathol. 126, 51–60 (1987).
Virgin, H.W., Mann, M.A., Fields, B.N. & Tyler, K.L. Monoclonal antibodies to reovirus reveal structure/function relationships between capsid proteins and genetics of susceptibility to antibody action. J. Virol. 65, 6772–6781 (1991).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Weck, K., Dal Canto, A., Gould, J. et al. Murine γ-herpesvirus 68 causes severe large-vessel arteritis in mice lacking interferon-γ responsiveness: A new model for virus-induced vascular disease. Nat Med 3, 1346–1353 (1997). https://doi.org/10.1038/nm1297-1346
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/nm1297-1346
This article is cited by
-
Immune protection is dependent on the gut microbiome in a lethal mouse gammaherpesviral infection
Scientific Reports (2020)
-
Cell Type-Specific Interferon-γ-mediated Antagonism of KSHV Lytic Replication
Scientific Reports (2019)
-
Vasculitis: determinants of disease patterns
Nature Reviews Rheumatology (2014)
-
The Potential Causality of the Microbiome and Infectious Pathogens in Primary Vasculitis
Current Clinical Microbiology Reports (2014)
-
Malignant catarrhal fever induced by Alcelaphine herpesvirus 1 is characterized by an expansion of activated CD3+CD8+CD4- T cells expressing a cytotoxic phenotype in both lymphoid and non-lymphoid tissues
Veterinary Research (2011)