[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis

Abstract

Immunization with myelin antigens leads to the development of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. The disease can also be induced by the transfer of encephalitogenic CD4+ T helper (TH) lymphocytes into naive mice. These T cells need to re-encounter their cognate antigen in the context of major histocompatibility complex (MHC) class II–bearing antigen-presenting cells (APCs) in order to recognize their target. The cell type and location of the APC mediating T-cell entry into the central nervous system (CNS) remain unknown. Here, we show that APCs of the lymphoreticular system and of the CNS parenchyma are dispensable for the immune invasion of the CNS. We also describe that a discrete population of vessel-associated dendritic cells (DCs) is present in human brain tissue. In mice, CD11c+ DCs alone are sufficient to present antigen in vivo to primed myelin-reactive T cells in order to mediate CNS inflammation and clinical disease development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Secondary lymphoid tissues are not a pivotal homing site for encephalitogenic lymphocytes.
Figure 2: MHC class II molecules in the CNS parenchyma are not crucial for the development of EAE.
Figure 3: Localization of MHC class II–expressing cells in CD11c–H2-Ab1/H2-Ab1−/− mice.
Figure 4: DC-restricted MHC class II expression is sufficient to permit disease development.
Figure 5: Presence of vessel-associated CD209+ cells in multiple sclerosis lesions.
Figure 6: Augmenting the number of DCs increases EAE severity.

Similar content being viewed by others

References

  1. Steinman, L. Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system. Cell 85, 299–302 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Krummel, M.F. & Davis, M.M. Dynamics of the immunological synapse: finding, establishing and solidifying a connection. Curr. Opin. Immunol. 14, 66–74 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Slavin, A.J. et al. Requirement for endocytic antigen processing and influence of invariant chain and H-2M deficiencies in CNS autoimmunity. J. Clin. Invest 108, 1133–1139 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee, S.C. & Raine, C.S. Multiple sclerosis: oligodendrocytes in active lesions do not express class II major histocompatibility complex molecules. J. Neuroimmunol. 25, 261–266 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Wong, G.H., Bartlett, P.F., Clark-Lewis, I., Battye, F., & Schrader, J.W. Inducible expression of H-2 and Ia antigens on brain cells. Nature 310, 688–691 (1984).

    Article  CAS  PubMed  Google Scholar 

  6. Becher, B., Prat, A., & Antel, J.P. Brain-immune connection: immuno-regulatory properties of CNS-resident cells. Glia 29, 293–304 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Fierz, W., Endler, B., Reske, K., Wekerle, H., & Fontana, A. Astrocytes as antigen-presenting cells. I. Induction of Ia antigen expression on astrocytes by T cells via immune interferon and its effect on antigen presentation. J. Immunol. 134, 3785–3793 (1985).

    CAS  PubMed  Google Scholar 

  8. Ford, A.L., Foulcher, E., Lemckert, F.A., & Sedgwick, J.D. Microglia induce CD4 T lymphocyte final effector function and death. J. Exp. Med. 184, 1737–1745 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Ford, A.L., Goodsall, A.L., Hickey, W.F., & Sedgwick, J.D. Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting. Phenotypic differences defined and direct ex vivo antigen presentation to myelin basic protein-reactive CD4+ T cells compared. J. Immunol. 154, 4309–4321 (1995).

    CAS  PubMed  Google Scholar 

  10. Carson, M.J., Reilly, C.R., Sutcliffe, J.G., & Lo, D. Mature microglia resemble immature antigen presenting cells. Glia 22, 72–85 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Flugel, A. et al. Migratory activity and functional changes of green fluorescent effector cells before and during experimental autoimmune encephalomyelitis. Immunity 14, 547–560 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Hickey, W.F. Migration of hematogenous cells through the blood-brain barrier and the initiation of CNS inflammation. Brain Pathol. 1, 97–105 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Shinkura, R. et al. Alymphoplasia is caused by a point mutation in the mouse gene encoding Nf-kappa b-inducing kinase. Nat. Genet. 22, 74–77 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Hickey, W.F. & Kimura, H. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 239, 290–292 (1988).

    Article  CAS  PubMed  Google Scholar 

  15. Becher, B. & Antel, J.P. Comparison of phenotypic and functional properties of immediately ex vivo and cultured human adult microglia. Glia 18, 1–10 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Matyszak, M.K. et al. Microglia induce myelin basic protein-specific T cell anergy or T cell activation, according to their state of activation. Eur. J. Immunol. 29, 3063–3076 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Ulvestad, E. et al. Human microglial cells have phenotypic and functional characteristics in common with both macrophages and dendritic antigen-presenting cells. J. Leukoc. Biol. 56, 732–740 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Becher,B., Durell,B.G., Miga,A.V., Hickey,W.F., & Noelle,R.J. The clinical course of experimental autoimmune encephalomyelitis and inflammation is controlled by the expression of CD40 within the central nervous system. J. Exp. Med. 193, 967–974 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Becher, B., Durell, B.G. & Noelle, R.J. IL-23 produced by CNS-resident cells controls T cell encephalitogenicity during the effector phase of experimental autoimmune encephalomyelitis. J. Clin. Invest 112, 1186–1191 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hickey, W.F., Vass, K., & Lassmann, H. Bone marrow-derived elements in the central nervous system: an immunohistochemical and ultrastructural survey of rat chimeras. J. Neuropathol. Exp. Neurol. 51, 246–256 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Asheuer, M. et al. Human CD34+ cells differentiate into microglia and express recombinant therapeutic protein. Proc. Natl. Acad. Sci. USA 101, 3557–3562 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lassmann, H., Schmied, M., Vass, K., & Hickey, W.F. Bone marrow derived elements and resident microglia in brain inflammation. Glia 7, 19–24 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Kivisakk, P. et al. Expression of CCR7 in multiple sclerosis: implications for CNS immunity. Ann. Neurol. 55, 627–638 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. McMenamin, P.G. Distribution and phenotype of dendritic cells and resident tissue macrophages in the dura mater, leptomeninges, and choroid plexus of the rat brain as demonstrated in wholemount preparations. J. Comp Neurol. 405, 553–562 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Matyszak, M.K. & Perry, V.H. The potential role of dendritic cells in immune-mediated inflammatory diseases in the central nervous system. Neurosci. 74, 599–608 (1996).

    Article  CAS  Google Scholar 

  26. Serafini, B., Columba-Cabezas, S., Di Rosa, F., & Aloisi, F. Intracerebral recruitment and maturation of dendritic cells in the onset and progression of experimental autoimmune encephalomyelitis. Am. J. Pathol. 157, 1991–2002 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lemos, M.P., Esquivel, F., Scott, P., & Laufer, T.M. MHC class II expression restricted to CD8{alpha}+ and CD11b+ dendritic cells is sufficient for control of Leishmania major. J. Exp. Med. 199, 725–730 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lemos, M.P., Fan, L., Lo, D., & Laufer, T.M. CD8alpha+ and CD11b+ dendritic cell-restricted MHC class II controls Th1 CD4+ T cell immunity. J. Immunol. 171, 5077–5084 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Geijtenbeek, T.B. et al. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100, 575–585 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. O'Keeffe, M. et al. Effects of administration of progenipoietin 1, Flt-3 ligand, granulocyte colony-stimulating factor, and pegylated granulocyte-macrophage colony-stimulating factor on dendritic cell subsets in mice. Blood 99, 2122–2130 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Maraskovsky, E. et al. Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J. Exp. Med. 184, 1953–1962 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Stuve, O. et al. The role of the MHC class II transactivator in class II expression and antigen presentation by astrocytes and in susceptibility to central nervous system autoimmune disease. J. Immunol. 169, 6720–6732 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Mossner, R. et al. Astrocytes as antigen presenting cells for primary and secondary T cell responses: effect of astrocyte infection by murine hepatitis virus. Adv. Exp. Med. Biol. 276, 647–654 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. Aloisi, F., Ria, F., Penna, G., & Adorini, L. Microglia are more efficient than astrocytes in antigen processing and in Th1 but not Th2 cell activation. J. Immunol. 160, 4671–4680 (1998).

    CAS  PubMed  Google Scholar 

  35. Juedes, A.E. & Ruddle, N.H. Resident and infiltrating central nervous system APCs regulate the emergence and resolution of experimental autoimmune encephalomyelitis. J. Immunol. 166, 5168–5175 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Cua, D.J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–748 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Heppner, F.L. et al. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat. Med. 11, 146–152 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Raine, C.S., Mokhtarian, F., & McFarlin, D.E. Adoptively transferred chronic relapsing experimental autoimmune encephalomyelitis in the mouse. Neuropathologic analysis. Lab Invest 51, 534–546 (1984).

    CAS  PubMed  Google Scholar 

  39. Prineas, J.W. Multiple sclerosis: presence of lymphatic capillaries and lymphoid tissue in the brain and spinal cord. Science 203, 1123–1125 (1979).

    Article  CAS  PubMed  Google Scholar 

  40. McMahon, E.J., et al. Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat. Med. 11, 335–339 (2005)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Center for Competence in Research (NCCR) Neural Plasticity and Repair (to B.B.), the National Science Foundation of Switzerland (to B.B.), an unrestricted grant by Serono Pharmaceuticals Geneva (to B.B.) and the US National Institutes of Health (to R.J.N., AI49580). B.B. is a Harry Weaver Neuroscience Scholar of the National Multiple Sclerosis Society. M.G. holds a fellowship of the Roche Research Foundation of Switzerland. F.L.H. is supported by the Stammbach foundation. The authors thank P. Bargsten, C. Skulina (University of Zurich) and B. Durell (Dartmouth Medical School) for technical support. The authors further thank M. Kurrer for discussions and A. Fontana (University of Zurich) for discussions and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burkhard Becher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Location of adoptively transferred encephalitogenic CD4+ T cells prior to CNS infiltration. (PDF 106 kb)

Supplementary Fig. 2

Location of BM-derived cells in the systemic immune compartment of BM-chimeras. (PDF 789 kb)

Supplementary Fig. 3

Treatment with FL drastically increases the number of CNS-associated DCs and augments disease severity. (PDF 76 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greter, M., Heppner, F., Lemos, M. et al. Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat Med 11, 328–334 (2005). https://doi.org/10.1038/nm1197

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1197

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing