[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The epigenetics of epithelial-mesenchymal plasticity in cancer

Abstract

During the course of malignant cancer progression, neoplastic cells undergo dynamic and reversible transitions between multiple phenotypic states, the extremes of which are defined by the expression of epithelial and mesenchymal phenotypes. This plasticity is enabled by underlying shifts in epigenetic regulation. A small cohort of pleiotropically acting transcription factors is widely recognized to effect these shifts by controlling the expression of a constituency of key target genes. These master regulators depend on complex epigenetic regulatory mechanisms, notably the induction of changes in the modifications of chromatin-associated histones, in order to achieve the widespread changes in gene expression observed during epithelial-mesenchymal transitions (EMTs). These associations indicate that an understanding of the functional interactions between such EMT-inducing transcription factors and the modulators of chromatin configuration will provide crucial insights into the fundamental mechanisms underlying cancer progression and may, in the longer term, generate new diagnostic and therapeutic modalities for treating high-grade malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Connecting extracellular signals to EMT transcription factors.
Figure 2: Epithelial-mesenchymal plasticity allows cancer cells to undergo functional adaptations during the invasion-metastasis cascade.
Figure 3: The epigenetic landscape governs the stability of epithelial-mesenchymal plasticity.
Figure 4: Interactions between transcription factors and epigenetic regulators.
Figure 5: Integral microRNA transcription regulator networks control epithelial-mesenchymal plasticity.

Similar content being viewed by others

References

  1. Polyak, K. & Weinberg, R.A. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat. Rev. Cancer 9, 265–273 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Thiery, J.P., Acloque, H., Huang, R.Y. & Nieto, M.A. Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Scheel, C. et al. Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell 145, 926–940 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Katoh, Y. & Katoh, M. Hedgehog signaling, epithelial-to-mesenchymal transition and miRNA. Int. J. Mol. Med. 22, 271–275 (2008).

    CAS  PubMed  Google Scholar 

  5. Moustakas, A. & Heldin, C.H. Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci. 98, 1512–1520 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. De Craene, B. & Berx, G. Regulatory networks defining EMT during cancer initiation and progression. Nat. Rev. Cancer 13, 97–110 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Zheng, H. & Kang, Y. Multilayer control of the EMT master regulators. Oncogene published online, doi:10.1038/onc.2013.128 (22 April 2013).

    Article  CAS  PubMed  Google Scholar 

  8. Mani, S.A. et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Guo, W. et al. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 148, 1015–1028 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gregory, P.A. et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 10, 593–601 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Peinado, H., Olmeda, D. & Cano, A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat. Rev. Cancer 7, 415–428 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Wellner, U. et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat. Cell Biol. 11, 1487–1495 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Yang, J. et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117, 927–939 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Savagner, P., Yamada, K.M. & Thiery, J.P. The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition. J. Cell Biol. 137, 1403–1419 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Blanco, M.J. et al. Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene 21, 3241–3246 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Ocaña, O.H. et al. Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell 22, 709–724 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Tsai, J.H., Donaher, J.L., Murphy, D.A., Chau, S. & Yang, J. Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell 22, 725–736 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Agger, K., Christensen, J., Cloos, P.A. & Helin, K. The emerging functions of histone demethylases. Curr. Opin. Genet. Dev. 18, 159–168 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Nieto, M.A. The ins and outs of the epithelial to mesenchymal transition in health and disease. Annu. Rev. Cell Dev. Biol. 27, 347–376 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Morel, A.P. et al. Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS ONE 3, e2888 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rhim, A.D. et al. EMT and dissemination precede pancreatic tumor formation. Cell 148, 349–361 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, Z. et al. Activated K-Ras and INK4a/Arf deficiency promote aggressiveness of pancreatic cancer by induction of EMT consistent with cancer stem cell phenotype. J. Cell Physiol. 228, 556–562 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Albino, D. et al. ESE3/EHF controls epithelial cell differentiation and its loss leads to prostate tumors with mesenchymal and stem-like features. Cancer Res. 72, 2889–2900 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Mulholland, D.J. et al. Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells. Cancer Res. 72, 1878–1889 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Morel, A.P. et al. EMT inducers catalyze malignant transformation of mammary epithelial cells and drive tumorigenesis towards claudin-low tumors in transgenic mice. PLoS Genet. 8, e1002723 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Carey, L., Winer, E., Viale, G., Cameron, D. & Gianni, L. Triple-negative breast cancer: disease entity or title of convenience? Nat. Rev. Clin. Oncol. 7, 683–692 (2010).

    Article  PubMed  Google Scholar 

  28. Sarrió, D. et al. Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res. 68, 989–997 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Blick, T. et al. Epithelial mesenchymal transition traits in human breast cancer cell lines parallel the CD44hi/CD24lo/– stem cell phenotype in human breast cancer. J. Mammary Gland Biol. Neoplasia 15, 235–252 (2010).

    Article  PubMed  Google Scholar 

  30. Blick, T. et al. Epithelial mesenchymal transition traits in human breast cancer cell lines. Clin. Exp. Metastasis 25, 629–642 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Trelstad, R.L., Hay, E.D. & Revel, J.D. Cell contact during early morphogenesis in the chick embryo. Dev. Biol. 16, 78–106 (1967).

    Article  CAS  PubMed  Google Scholar 

  32. Arnoux, V., Nassour, M., L'Helgoualc'h, A., Hipskind, R.A. & Savagner, P. Erk5 controls Slug expression and keratinocyte activation during wound healing. Mol. Biol. Cell 19, 4738–4749 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Micalizzi, D.S., Farabaugh, S.M. & Ford, H.L. Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J. Mammary Gland Biol. Neoplasia 15, 117–134 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bednarz-Knoll, N., Alix-Panabieres, C. & Pantel, K. Plasticity of disseminating cancer cells in patients with epithelial malignancies. Cancer Metastasis Rev. 31, 673–687 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Chao, Y., Wu, Q., Acquafondata, M., Dhir, R. & Wells, A. Partial mesenchymal to epithelial reverting transition in breast and prostate cancer metastases. Cancer Microenviron. 5, 19–28 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Leroy, P. & Mostov, K.E. Slug is required for cell survival during partial epithelial-mesenchymal transition of HGF-induced tubulogenesis. Mol. Biol. Cell 18, 1943–1952 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Theveneau, E. & Mayor, R. Neural crest delamination and migration: from epithelium-to-mesenchyme transition to collective cell migration. Dev. Biol. 366, 34–54 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Gupta, P.B. et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146, 633–644 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Chaffer, C.L. et al. Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc. Natl. Acad. Sci. USA 108, 7950–7955 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schwitalla, S. et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell–like properties. Cell 152, 25–38 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Frisch, S.M. The epithelial cell default-phenotype hypothesis and its implications for cancer. Bioessays 19, 705–709 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Jechlinger, M. et al. Autocrine PDGFR signaling promotes mammary cancer metastasis. J. Clin. Invest. 116, 1561–1570 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sparmann, A. & van Lohuizen, M. Polycomb silencers control cell fate, development and cancer. Nat. Rev. Cancer 6, 846–856 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Pietersen, A.M. & van Lohuizen, M. Stem cell regulation by polycomb repressors: postponing commitment. Curr. Opin. Cell Biol. 20, 201–207 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Orlando, V. Polycomb, epigenomes, and control of cell identity. Cell 112, 599–606 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Cedar, H. & Bergman, Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat. Rev. Genet. 10, 295–304 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Bracken, A.P. & Helin, K. Polycomb group proteins: navigators of lineage pathways led astray in cancer. Nat. Rev. Cancer 9, 773–784 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Bracken, A.P., Dietrich, N., Pasini, D., Hansen, K.H. & Helin, K. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev. 20, 1123–1136 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cao, Q. et al. Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene 27, 7274–7284 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Herranz, N. et al. Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor. Mol. Cell Biol. 28, 4772–4781 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Iliopoulos, D. et al. Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol. Cell 39, 761–772 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zaret, K.S. & Carroll, J.S. Pioneer transcription factors: establishing competence for gene expression. Genes Dev. 25, 2227–2241 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wright, M.H. et al. Brca1 breast tumors contain distinct CD44+/CD24 and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res. 10, R10 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chang, C.J. et al. EZH2 promotes expansion of breast tumor initiating cells through activation of RAF1–β-catenin signaling. Cancer Cell 19, 86–100 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Collett, K. et al. Expression of enhancer of zeste homologue 2 is significantly associated with increased tumor cell proliferation and is a marker of aggressive breast cancer. Clin. Cancer Res. 12, 1168–1174 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Kleer, C.G. et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc. Natl. Acad. Sci. USA 100, 11606–11611 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Puppe, J. et al. BRCA1-deficient mammary tumor cells are dependent on EZH2 expression and sensitive to Polycomb Repressive Complex 2–inhibitor 3-deazaneplanocin A. Breast Cancer Res. 11, R63 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Onder, T.T. et al. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 68, 3645–3654 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Mills, A.A. Throwing the cancer switch: reciprocal roles of polycomb and trithorax proteins. Nat. Rev. Cancer 10, 669–682 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Molofsky, A.V. et al. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425, 962–967 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Iwama, A. et al. Enhanced self-renewal of hematopoietic stem cells mediated by the polycomb gene product Bmi-1. Immunity 21, 843–851 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Sangiorgi, E. & Capecchi, M.R. Bmi1 is expressed in vivo in intestinal stem cells. Nat. Genet. 40, 915–920 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sangiorgi, E. & Capecchi, M.R. Bmi1 lineage tracing identifies a self-renewing pancreatic acinar cell subpopulation capable of maintaining pancreatic organ homeostasis. Proc. Natl. Acad. Sci. USA 106, 7101–7106 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lobo, N.A., Shimono, Y., Qian, D. & Clarke, M.F. The biology of cancer stem cells. Annu. Rev. Cell Dev. Biol. 23, 675–699 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Valk-Lingbeek, M.E., Bruggeman, S.W. & van Lohuizen, M. Stem cells and cancer; the polycomb connection. Cell 118, 409–418 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Pardal, R., Molofsky, A.V., He, S. & Morrison, S.J. Stem cell self-renewal and cancer cell proliferation are regulated by common networks that balance the activation of proto-oncogenes and tumor suppressors. Cold Spring Harb. Symp. Quant. Biol. 70, 177–185 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Park, I.K., Morrison, S.J. & Clarke, M.F. Bmi1, stem cells, and senescence regulation. J. Clin. Invest. 113, 175–179 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Song, L.B. et al. The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial cells. J. Clin. Invest. 119, 3626–3636 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Martin, A. & Cano, A. Tumorigenesis: Twist1 links EMT to self-renewal. Nat. Cell Biol. 12, 924–925 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Yang, M.H. et al. Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nat. Cell Biol. 12, 982–992 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Peinado, H., Ballestar, E., Esteller, M. & Cano, A. Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol. Cell Biol. 24, 306–319 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. von Burstin, J. et al. E-cadherin regulates metastasis of pancreatic cancer in vivo and is suppressed by a SNAIL/HDAC1/HDAC2 repressor complex. Gastroenterology 137, 361–371, 371.e1–5 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Lin, Y. et al. The SNAG domain of Snail1 functions as a molecular hook for recruiting lysine-specific demethylase 1. EMBO J. 29, 1803–1816 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fu, J. et al. The TWIST/Mi2/NuRD protein complex and its essential role in cancer metastasis. Cell Res. 21, 275–289 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Shi, Y. et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941–953 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Harris, W.J. et al. The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells. Cancer Cell 21, 473–487 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Lim, S. et al. Lysine-specific demethylase 1 (LSD1) is highly expressed in ER-negative breast cancers and a biomarker predicting aggressive biology. Carcinogenesis 31, 512–520 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Lin, T., Ponn, A., Hu, X., Law, B.K. & Lu, J. Requirement of the histone demethylase LSD1 in Snai1-mediated transcriptional repression during epithelial-mesenchymal transition. Oncogene 29, 4896–4904 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schenk, T. et al. Inhibition of the LSD1 (KDM1A) demethylase reactivates the all-trans–retinoic acid differentiation pathway in acute myeloid leukemia. Nat. Med. 18, 605–611 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang, Y. et al. LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell 138, 660–672 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Metzger, E. et al. LSD1 demethylates repressive histone marks to promote androgen-receptor–dependent transcription. Nature 437, 436–439 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Bernstein, B.E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Chaffer, C.L. et al. Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell 154, 61–74 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Maruyama, R. et al. Epigenetic regulation of cell type-specific expression patterns in the human mammary epithelium. PLoS Genet. 7, e1001369 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Vallés, A.M. et al. Acidic fibroblast growth factor is a modulator of epithelial plasticity in a rat bladder carcinoma cell line. Proc. Natl. Acad. Sci. USA 87, 1124–1128 (1990).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Dong, C. et al. G9a interacts with Snail and is critical for Snail-mediated E-cadherin repression in human breast cancer. J. Clin. Invest. 122, 1469–1486 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dong, C. et al. Interaction with Suv39H1 is critical for Snail-mediated E-cadherin repression in breast cancer. Oncogene 32, 1351–1362 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Ke, X.S. et al. Global profiling of histone and DNA methylation reveals epigenetic-based regulation of gene expression during epithelial to mesenchymal transition in prostate cells. BMC Genomics 11, 669 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bert, S.A. et al. Regional activation of the cancer genome by long-range epigenetic remodeling. Cancer Cell 23, 9–22 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Zouridis, H. et al. Methylation subtypes and large-scale epigenetic alterations in gastric cancer. Sci. Transl. Med. 4, 156ra140 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Coolen, M.W. et al. Consolidation of the cancer genome into domains of repressive chromatin by long-range epigenetic silencing (LRES) reduces transcriptional plasticity. Nat. Cell Biol. 12, 235–246 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Easwaran, H. & Baylin, S.B. Epigenetic abnormalities in cancer find a “home on the range”. Cancer Cell 23, 1–3 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Creighton, C.J. et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc. Natl. Acad. Sci. USA 106, 13820–13825 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Li, X. et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J. Natl. Cancer Inst. 100, 672–679 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Singh, A. & Settleman, J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29, 4741–4751 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Diehn, M. et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458, 780–783 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ceppi, P. et al. Loss of miR-200c expression induces an aggressive, invasive, and chemoresistant phenotype in non-small cell lung cancer. Mol. Cancer Res. 8, 1207–1216 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Vrba, L. et al. Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells. PLoS ONE 5, e8697 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Eades, G. et al. miR-200a regulates SIRT1 expression and epithelial to mesenchymal transition (EMT)-like transformation in mammary epithelial cells. J. Biol. Chem. 286, 25992–26002 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tryndyak, V.P., Beland, F.A. & Pogribny, I.P. E-cadherin transcriptional down-regulation by epigenetic and microRNA-200 family alterations is related to mesenchymal and drug-resistant phenotypes in human breast cancer cells. Int. J. Cancer 126, 2575–2583 (2010).

    CAS  PubMed  Google Scholar 

  101. Daskalakis, M. et al. Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-Aza-2′-deoxycytidine (decitabine) treatment. Blood 100, 2957–2964 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Petti, M.C. et al. Complete remission through blast cell differentiation in PLZF/RARα-positive acute promyelocytic leukemia: in vitro and in vivo studies. Blood 100, 1065–1067 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Shaker, S., Bernstein, M., Momparler, L.F. & Momparler, R.L. Preclinical evaluation of antineoplastic activity of inhibitors of DNA methylation (5-aza-2′-deoxycytidine) and histone deacetylation (trichostatin A, depsipeptide) in combination against myeloid leukemic cells. Leuk. Res. 27, 437–444 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Cameron, E.E., Bachman, K.E., Myohanen, S., Herman, J.G. & Baylin, S.B. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat. Genet. 21, 103–107 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Lengauer, C. Cancer. An unstable liaison. Science 300, 442–443 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Gaudet, F. et al. Induction of tumors in mice by genomic hypomethylation. Science 300, 489–492 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Eden, A., Gaudet, F., Waghmare, A. & Jaenisch, R. Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300, 455 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Yang, A.S., Estecio, M.R., Garcia-Manero, G., Kantarjian, H.M. & Issa, J.P. Comment on “Chromosomal instability and tumors promoted by DNA hypomethylation” and “Induction of tumors in nice by genomic hypomethylation”. Science 302, 1153 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Bruzzese, F. et al. HDAC inhibitor vorinostat enhances the antitumor effect of gefitinib in squamous cell carcinoma of head and neck by modulating ErbB receptor expression and reverting EMT. J. Cell. Physiol. 226, 2378–2390 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Lei, W. et al. Histone deacetylase 1 is required for transforming growth factor-β1–induced epithelial-mesenchymal transition. Int. J. Biochem. Cell Biol. 42, 1489–1497 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Kaimori, A. et al. Histone deacetylase inhibition suppresses the transforming growth factor β1–induced epithelial-to-mesenchymal transition in hepatocytes. Hepatology 52, 1033–1045 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Jiang, G.M. et al. Histone deacetylase inhibitor induction of epithelial-mesenchymal transitions via up-regulation of Snail facilitates cancer progression. Biochim. Biophys. Acta 1833, 663–671 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Kong, D. et al. Histone deacetylase inhibitors induce epithelial-to-mesenchymal transition in prostate cancer cells. PLoS ONE 7, e45045 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Delmore, J.E. et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146, 904–917 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Whyte, W.A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lovén, J. et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153, 320–334 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Daigle, S.R. et al. Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 20, 53–65 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Knutson, S.K. et al. A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat. Chem. Biol. 8, 890–896 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Finn, R.S. et al. Dasatinib, an orally active small molecule inhibitor of both the src and abl kinases, selectively inhibits growth of basal-type/”triple-negative” breast cancer cell lines growing in vitro. Breast Cancer Res. Treat. 105, 319–326 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Tam, W.L. et al. Protein kinase C α is a central signaling node and therapeutic target for breast cancer stem cells. Cancer Cell 24, 347–364 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bonde, A.K., Tischler, V., Kumar, S., Soltermann, A. & Schwendener, R.A. Intratumoral macrophages contribute to epithelial-mesenchymal transition in solid tumors. BMC Cancer 12, 35 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gao, M.Q. et al. Stromal fibroblasts from the interface zone of human breast carcinomas induce an epithelial-mesenchymal transition–like state in breast cancer cells in vitro. J. Cell Sci. 123, 3507–3514 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. van Zijl, F. et al. Hepatic tumor-stroma crosstalk guides epithelial to mesenchymal transition at the tumor edge. Oncogene 28, 4022–4033 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Li, H.J., Reinhardt, F., Herschman, H.R. & Weinberg, R.A. Cancer-stimulated mesenchymal stem cells create a carcinoma stem-cell niche via Prostaglandin E2 signaling. Cancer Discov. 2, 840–855 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. Wyckoff, J.B. et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res. 67, 2649–2656 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Yu, M. et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339, 580–584 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Brabletz, T. To differentiate or not—routes towards metastasis. Nat. Rev. Cancer 12, 425–436 (2012).

    Article  CAS  PubMed  Google Scholar 

  129. Brabletz, S. & Brabletz, T. The ZEB/miR-200 feedback loop—a motor of cellular plasticity in development and cancer? EMBO Rep. 11, 670–677 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Bracken, C.P. et al. A double-negative feedback loop between ZEB1–SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res. 68, 7846–7854 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Chang, C.J. et al. p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat. Cell Biol. 13, 317–323 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Acloque, H., Adams, M.S., Fishwick, K., Bronner-Fraser, M. & Nieto, M.A. Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J. Clin. Invest. 119, 1438–1449 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Thiery, J.P. Epithelial-mesenchymal transitions in tumour progression. Nat. Rev. Cancer 2, 442–454 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Zavadil, J. & Bottinger, E.P. TGF-β and epithelial-to-mesenchymal transitions. Oncogene 24, 5764–5774 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. Taylor, M.A., Parvani, J.G. & Schiemann, W.P. The pathophysiology of epithelial-mesenchymal transition induced by transforming growth factor-β in normal and malignant mammary epithelial cells. J. Mammary Gland Biol. Neoplasia 15, 169–190 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Han, G. et al. Distinct mechanisms of TGF-β1–mediated epithelial-to-mesenchymal transition and metastasis during skin carcinogenesis. J. Clin. Invest. 115, 1714–1723 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lehmann, K. et al. Raf induces TGFβ production while blocking its apoptotic but not invasive responses: a mechanism leading to increased malignancy in epithelial cells. Genes Dev. 14, 2610–2622 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Oft, M., Heider, K.H. & Beug, H. TGFβ signaling is necessary for carcinoma cell invasiveness and metastasis. Curr. Biol. 8, 1243–1252 (1998).

    Article  CAS  PubMed  Google Scholar 

  139. Xi, Q. et al. A poised chromatin platform for TGF-β access to master regulators. Cell 147, 1511–1524 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. McDonald, O.G., Wu, H., Timp, W., Doi, A. & Feinberg, A.P. Genome-scale epigenetic reprogramming during epithelial-to-mesenchymal transition. Nat. Struct. Mol. Biol. 18, 867–874 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Vermeulen, L. et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat. Cell Biol. 12, 468–476 (2010).

    Article  CAS  PubMed  Google Scholar 

  142. Moon, R.T., Kohn, A.D., De Ferrari, G.V. & Kaykas, A. WNT and β-catenin signalling: diseases and therapies. Nat. Rev. Genet. 5, 691–701 (2004).

    Article  CAS  PubMed  Google Scholar 

  143. Taketo, M.M. Shutting down Wnt signal-activated cancer. Nat. Genet. 36, 320–322 (2004).

    Article  CAS  PubMed  Google Scholar 

  144. Liu, B.Y., McDermott, S.P., Khwaja, S.S. & Alexander, C.M. The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc. Natl. Acad. Sci. USA 101, 4158–4163 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Mohamed, O.A., Clarke, H.J. & Dufort, D. β-catenin signaling marks the prospective site of primitive streak formation in the mouse embryo. Dev. Dyn. 231, 416–424 (2004).

    Article  CAS  PubMed  Google Scholar 

  146. Kemler, R. et al. Stabilization of β-catenin in the mouse zygote leads to premature epithelial-mesenchymal transition in the epiblast. Development 131, 5817–5824 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Kim, K., Lu, Z. & Hay, E.D. Direct evidence for a role of β-catenin/LEF-1 signaling pathway in induction of EMT. Cell Biol. Int. 26, 463–476 (2002).

    Article  CAS  PubMed  Google Scholar 

  148. Reya, T. & Clevers, H. Wnt signalling in stem cells and cancer. Nature 434, 843–850 (2005).

    Article  CAS  PubMed  Google Scholar 

  149. Yook, J.I. et al. A Wnt-Axin2–GSK3β cascade regulates Snail1 activity in breast cancer cells. Nat. Cell Biol. 8, 1398–1406 (2006).

    Article  CAS  PubMed  Google Scholar 

  150. Gilles, C. et al. Transactivation of vimentin by β-catenin in human breast cancer cells. Cancer Res. 63, 2658–2664 (2003).

    CAS  PubMed  Google Scholar 

  151. Kong, D. et al. Platelet-derived growth factor-D overexpression contributes to epithelial-mesenchymal transition of PC3 prostate cancer cells. Stem Cells 26, 1425–1435 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Brabletz, S. et al. The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells. EMBO J. 30, 770–782 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Thomson, S. et al. A systems view of epithelial-mesenchymal transition signaling states. Clin. Exp. Metastasis 28, 137–155 (2011).

    Article  CAS  PubMed  Google Scholar 

  154. Hardy, K.M., Booth, B.W., Hendrix, M.J., Salomon, D.S. & Strizzi, L. ErbB/EGF signaling and EMT in mammary development and breast cancer. J. Mammary Gland Biol. Neoplasia 15, 191–199 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Sakai, D. et al. Regulation of Slug transcription in embryonic ectoderm by β-catenin–Lef/Tcf and BMP-Smad signaling. Dev. Growth Differ. 47, 471–482 (2005).

    Article  CAS  PubMed  Google Scholar 

  156. Sánchez-Tilló, E. et al. β-catenin/TCF4 complex induces the epithelial-to-mesenchymal transition (EMT)-activator ZEB1 to regulate tumor invasiveness. Proc. Natl. Acad. Sci. USA 108, 19204–19209 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Kim, T. et al. p53 regulates epithelial-mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. J. Exp. Med. 208, 875–883 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Korpal, M., Lee, E.S., Hu, G. & Kang, Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J. Biol. Chem. 283, 14910–14914 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Park, S.M., Gaur, A.B., Lengyel, E. & Peter, M.E. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 22, 894–907 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Davalos, V. et al. Dynamic epigenetic regulation of the microRNA-200 family mediates epithelial and mesenchymal transitions in human tumorigenesis. Oncogene 31, 2062–2074 (2012).

    Article  CAS  PubMed  Google Scholar 

  161. Neves, R. et al. Role of DNA methylation in miR-200c/141 cluster silencing in invasive breast cancer cells. BMC Res. Notes 3, 219 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Wiklund, E.D. et al. Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer. Int. J. Cancer 128, 1327–1334 (2011).

    Article  CAS  PubMed  Google Scholar 

  163. Tellez, C.S. et al. EMT and stem cell–like properties associated with miR-205 and miR-200 epigenetic silencing are early manifestations during carcinogen-induced transformation of human lung epithelial cells. Cancer Res. 71, 3087–3097 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Kasinski, A.L. & Slack, F.J. Epigenetics and genetics. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat. Rev. Cancer 11, 849–864 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Kong, Y.W., Ferland-McCollough, D., Jackson, T.J. & Bushell, M. microRNAs in cancer management. Lancet Oncol. 13, e249–e258 (2012).

    Article  CAS  PubMed  Google Scholar 

  166. Rinn, J.L. & Chang, H.Y. Genome regulation by long noncoding RNAs. Annu. Rev. Biochem. 81, 145–166 (2012).

    Article  CAS  PubMed  Google Scholar 

  167. Prensner, J.R. & Chinnaiyan, A.M. The emergence of lncRNAs in cancer biology. Cancer Discov. 1, 391–407 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Gupta, R.A. et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464, 1071–1076 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Rinn, J.L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 1311–1323 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J.A. Krall for helpful comments and T. DiCesare for illustrations. Research in the Weinberg laboratory is supported by grants from the US National Institutes of Health (P01 CA080111), the Breast Cancer Research Foundation, MIT Ludwig Center for Molecular Oncology and the Cotswold Trust. R.A.W. is an American Cancer Society and Ludwig Foundation professor. W.L.T. is supported by the MIT Ludwig Center for Molecular Oncology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A Weinberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tam, W., Weinberg, R. The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat Med 19, 1438–1449 (2013). https://doi.org/10.1038/nm.3336

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3336

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer