[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tumor metastasis: moving new biological insights into the clinic

Abstract

As the culprit behind most cancer-related deaths, metastasis is the ultimate challenge in our effort to fight cancer as a life-threatening disease. The explosive growth of metastasis research in the past decade has yielded an unprecedented wealth of information about the tumor-intrinsic and tumor-extrinsic mechanisms that dictate metastatic behaviors, the molecular and cellular basis underlying the distinct courses of metastatic progression in different cancers and what renders metastatic cancer refractory to available therapies. However, integration of such new knowledge into an improved, metastasis-oriented oncological drug development strategy is needed to thwart the development of metastatic disease at every stage of progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Models depicting the cellular and molecular basis in metastatic potential and progression.
Figure 2: The early steps of metastasis: tumor invasion, dissemination and survival in the circulation.

Debbie Maizels

Figure 3: Metastatic dormancy and reactivation in the lung.

Debbie Maizels

Figure 4: Tumor-stroma interactions at the primary site influence subsequent metastatic steps.

Debbie Maizels

Figure 5: Late steps of metastasis: niche formation, dormancy and colonization.

Debbie Maizels

Figure 6: Challenges and strategies for establishing multiple lines of defense against metastasis at different phases of tumor progression.

Debbie Maizels

Similar content being viewed by others

References

  1. Disibio, G. & French, S.W. Metastatic patterns of cancers: results from a large autopsy study. Arch. Pathol. Lab. Med. 132, 931–939 (2008).

    PubMed  Google Scholar 

  2. Chen, H., Shah, A.S., Girgis, R.E. & Grossman, S.A. Transmission of glioblastoma multiforme after bilateral lung transplantation. J. Clin. Oncol. 26, 3284–3285 (2008).

    Article  PubMed  Google Scholar 

  3. Smid, M. et al. Subtypes of breast cancer show preferential site of relapse. Cancer Res. 68, 3108–3114 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Perou, C.M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. van de Vijver, M.J. et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347, 1999–2009 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Sørlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA 98, 10869–10874 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wang, Z.A. et al. Lineage analysis of basal epithelial cells reveals their unexpected plasticity and supports a cell-of-origin model for prostate cancer heterogeneity. Nat. Cell Biol. 15, 274–283 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lim, E. et al. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat. Med. 15, 907–913 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Molyneux, G. et al. BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell 7, 403–417 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Hunter, K. Host genetics influence tumour metastasis. Nat. Rev. Cancer 6, 141–146 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Winter, S.F., Lukes, L., Walker, R.C., Welch, D.R. & Hunter, K.W. Allelic variation and differential expression of the mSIN3A histone deacetylase complex gene Arid4b promote mammary tumor growth and metastasis. PLoS Genet. 8, e1002735 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Goldberger, N., Walker, R.C., Kim, C.H., Winter, S. & Hunter, K.W. Inherited variation in miR-290 expression suppresses breast cancer progression by targeting the metastasis susceptibility gene Arid4b. Cancer Res. 73, 2671–2681 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Faraji, F. et al. Cadm1 is a metastasis susceptibility gene that suppresses metastasis by modifying tumor interaction with the cell-mediated immunity. PLoS Genet. 8, e1002926 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Slamon, D.J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Chapman, P.B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 2507–2516 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kwak, E.L. et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N. Engl. J. Med. 363, 1693–1703 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ithimakin, S. et al. HER2 drives luminal breast cancer stem cells in the absence of HER2 amplification: implications for efficacy of adjuvant trastuzumab. Cancer Res. 73, 1635–1646 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Braun, S. et al. ErbB2 overexpression on occult metastatic cells in bone marrow predicts poor clinical outcome of stage I–III breast cancer patients. Cancer Res. 61, 1890–1895 (2001).

    CAS  PubMed  Google Scholar 

  20. Gasch, C. et al. Heterogeneity of epidermal growth factor receptor status and mutations of KRAS/PIK3CA in circulating tumor cells of patients with colorectal cancer. Clin. Chem. 59, 252–260 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Lito, P. et al. Relief of profound feedback inhibition of mitogenic signaling by RAF inhibitors attenuates their activity in BRAFV600E melanomas. Cancer Cell 22, 668–682 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gupta, G.P. & Massague, J. Cancer metastasis: building a framework. Cell 127, 679–695 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Chambers, A.F., Groom, A.C. & MacDonald, I.C. Dissemination and growth of cancer cells in metastatic sites. Nat. Rev. Cancer 2, 563–572 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Friedl, P. & Wolf, K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer 3, 362–374 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Friedl, P., Locker, J., Sahai, E. & Segall, J.E. Classifying collective cancer cell invasion. Nat. Cell Biol. 14, 777–783 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Christiansen, J.J. & Rajasekaran, A.K. Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res. 66, 8319–8326 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Giampieri, S. et al. Localized and reversible TGFβ signalling switches breast cancer cells from cohesive to single cell motility. Nat. Cell Biol. 11, 1287–1296 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thiery, J.P., Acloque, H., Huang, R.Y. & Nieto, M.A. Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Pencheva, N. & Tavazoie, S.F. Control of metastatic progression by microRNA regulatory networks. Nat. Cell Biol. 15, 546–554 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tam, W.L. & Weinberg, R.A. Epigenetics of epithelial-mesenchymal plasticity in cancer. Nat. Med. 19, 1438–1449 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. De Craene, B. & Berx, G. Regulatory networks defining EMT during cancer initiation and progression. Nat. Rev. Cancer 13, 97–110 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Brabletz, T. To differentiate or not—routes towards metastasis. Nat. Rev. Cancer 12, 425–436 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Scheel, C. & Weinberg, R.A. Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin. Cancer Biol. 22, 396–403 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ledford, H. Cancer theory faces doubts. Nature 472, 273 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Brabletz, T. et al. Variable β-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc. Natl. Acad. Sci. USA 98, 10356–10361 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bednarz-Knoll, N., Alix-Panabieres, C. & Pantel, K. Plasticity of disseminating cancer cells in patients with epithelial malignancies. Cancer Metastasis Rev. 31, 673–687 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Yokobori, T. et al. Plastin3 is a novel marker for circulating tumor cells undergoing the epithelial-mesenchymal transition and is associated with colorectal cancer prognosis. Cancer Res. 73, 2059–2069 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Yu, M. et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339, 580–584 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kessenbrock, K., Plaks, V. & Werb, Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141, 52–67 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Boyd, N.F. et al. Heritability of mammographic density, a risk factor for breast cancer. N. Engl. J. Med. 347, 886–894 (2002).

    Article  PubMed  Google Scholar 

  41. Provenzano, P.P. et al. Collagen density promotes mammary tumor initiation and progression. BMC Med. 6, 11 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Levental, K.R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gao, Y. et al. LKB1 inhibits lung cancer progression through lysyl oxidase and extracellular matrix remodeling. Proc. Natl. Acad. Sci. USA 107, 18892–18897 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gilkes, D.M. et al. Procollagen lysyl hydroxylase 2 is essential for hypoxia-induced breast cancer metastasis. Mol. Cancer Res. 11, 456–466 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Erler, J.T. et al. Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440, 1222–1226 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Lu, P., Weaver, V.M. & Werb, Z. The extracellular matrix: a dynamic niche in cancer progression. J. Cell Biol. 196, 395–406 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Weis, S.M. & Cheresh, D.A. Tumor angiogenesis: molecular pathways and therapeutic targets. Nat. Med. 17, 1359–1370 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Sonoshita, M. et al. Suppression of colon cancer metastasis by Aes through inhibition of Notch signaling. Cancer Cell 19, 125–137 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Reymond, N. et al. Cdc42 promotes transendothelial migration of cancer cells through β1 integrin. J. Cell Biol. 199, 653–668 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Valastyan, S. & Weinberg, R.A. Tumor metastasis: molecular insights and evolving paradigms. Cell 147, 275–292 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Minn, A.J. et al. Genes that mediate breast cancer metastasis to lung. Nature 436, 518–524 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Padua, D. et al. TGFβ primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 133, 66–77 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gupta, G.P. et al. Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446, 765–770 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Douma, S. et al. Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature 430, 1034–1039 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Bos, P.D. et al. Genes that mediate breast cancer metastasis to the brain. Nature 459, 1005–1009 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen, Q., Zhang, X.H. & Massague, J. Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell 20, 538–549 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Grabinski, N. et al. Distinct functional roles of Akt isoforms for proliferation, survival, migration and EGF-mediated signalling in lung cancer derived disseminated tumor cells. Cell. Signal. 23, 1952–1960 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Chao, M.P., Weissman, I.L. & Majeti, R. The CD47-SIRPα pathway in cancer immune evasion and potential therapeutic implications. Curr. Opin. Immunol. 24, 225–232 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Baccelli, I. et al. Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat. Biotechnol. 31, 539–544 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Weiskopf, K. et al. Engineered SIRPα variants as immunotherapeutic adjuvants to anticancer antibodies. Science 341, 88–91 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Pantel, K. & Brakenhoff, R.H. Dissecting the metastatic cascade. Nat. Rev. Cancer 4, 448–456 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Aguirre-Ghiso, J.A. Models, mechanisms and clinical evidence for cancer dormancy. Nat. Rev. Cancer 7, 834–846 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shibue, T., Brooks, M.W., Inan, M.F., Reinhardt, F. & Weinberg, R.A. The outgrowth of micrometastases is enabled by the formation of filopodium-like protrusions. Cancer Discov. 2, 706–721 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shibue, T. & Weinberg, R.A. Integrin β1–focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs. Proc. Natl. Acad. Sci. USA 106, 10290–10295 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Barkan, D. et al. Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. Cancer Res. 68, 6241–6250 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Barkan, D. et al. Metastatic growth from dormant cells induced by a col-I–enriched fibrotic environment. Cancer Res. 70, 5706–5716 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Aguirre Ghiso, J.A., Kovalski, K. & Ossowski, L. Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling. J. Cell Biol. 147, 89–104 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Ranganathan, A.C., Adam, A.P., Zhang, L. & Aguirre-Ghiso, J.A. Tumor cell dormancy induced by p38SAPK and ER-stress signaling: an adaptive advantage for metastatic cells? Cancer Biol. Ther. 5, 729–735 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Sosa, M.S., Avivar-Valderas, A., Bragado, P., Wen, H.C. & Aguirre-Ghiso, J.A. ERK1/2 and p38α/β signaling in tumor cell quiescence: opportunities to control dormant residual disease. Clin. Cancer Res. 17, 5850–5857 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gao, H. et al. The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites. Cell 150, 764–779 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kang, Y. et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537–549 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Sethi, N., Dai, X., Winter, C.G. & Kang, Y. Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell 19, 192–205 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tabariès, S. et al. Claudin-2 is selectively enriched in and promotes the formation of breast cancer liver metastases through engagement of integrin complexes. Oncogene 30, 1318–1328 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Lu, X. et al. VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging α4β1-positive osteoclast progenitors. Cancer Cell 20, 701–714 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shiozawa, Y. et al. Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J. Clin. Invest. 121, 1298–1312 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Balic, M. et al. Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin. Cancer Res. 12, 5615–5621 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Hanahan, D. & Coussens, L.M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309–322 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Quail, D.F. & Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 45–59 (2013).

    Article  CAS  Google Scholar 

  79. Finak, G. et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat. Med. 14, 518–527 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Fidler, I.J. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat. Rev. Cancer 3, 453–458 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Wyckoff, J. et al. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res. 64, 7022–7029 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. DeNardo, D.G. et al. CD4+ T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16, 91–102 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dirat, B. et al. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res. 71, 2455–2465 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Karnoub, A.E. et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449, 557–563 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Nieman, K.M. et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med. 17, 1498–1503 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Luga, V. et al. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell 151, 1542–1556 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Lu, X. & Kang, Y. Hypoxia and hypoxia-inducible factors: master regulators of metastasis. Clin. Cancer Res. 16, 5928–5935 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tan, W. et al. Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL-RANK signalling. Nature 470, 548–553 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rhim, A.D. et al. EMT and dissemination precede pancreatic tumor formation. Cell 148, 349–361 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Branco-Price, C. et al. Endothelial cell HIF-1α and HIF-2α differentially regulate metastatic success. Cancer Cell 21, 52–65 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Calon, A. et al. Dependency of colorectal cancer on a TGF-β–driven program in stromal cells for metastasis initiation. Cancer Cell 22, 571–584 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Markowitz, S.D. & Bertagnolli, M.M. Molecular origins of cancer: molecular basis of colorectal cancer. N. Engl. J. Med. 361, 2449–2460 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Peinado, H. et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 18, 883–891 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Grange, C. et al. Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res. 71, 5346–5356 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Kaplan, R.N. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820–827 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hiratsuka, S., Watanabe, A., Aburatani, H. & Maru, Y. Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat. Cell Biol. 8, 1369–1375 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Hiratsuka, S. et al. The S100A8-serum amyloid A3–TLR4 paracrine cascade establishes a pre-metastatic phase. Nat. Cell Biol. 10, 1349–1355 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Psaila, B. & Lyden, D. The metastatic niche: adapting the foreign soil. Nat. Rev. Cancer 9, 285–293 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Catena, R. et al. Bone marrow-derived Gr1+ cells can generate a metastasis-resistant microenvironment via induced secretion of thrombospondin-1. Cancer Discov. 3, 578–589 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wilson, A. & Trumpp, A. Bone-marrow haematopoietic-stem-cell niches. Nat. Rev. Immunol. 6, 93–106 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Ghajar, C.M. et al. The perivascular niche regulates breast tumour dormancy. Nat. Cell Biol. 15, 807–817 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kienast, Y. et al. Real-time imaging reveals the single steps of brain metastasis formation. Nat. Med. 16, 116–122 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Gao, D. et al. Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science 319, 195–198 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Lyden, D. et al. Impaired recruitment of bone-marrow–derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat. Med. 7, 1194–1201 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Lyden, D. et al. Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature 401, 670–677 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Butler, J.M., Kobayashi, H. & Rafii, S. Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat. Rev. Cancer 10, 138–146 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Cao, P.D., Cheung, W.K. & Nguyen, D.X. Cell lineage specification in tumor progression and metastasis. Discov. Med. 12, 329–340 (2011).

    PubMed  Google Scholar 

  108. Winslow, M.M. et al. Suppression of lung adenocarcinoma progression by Nkx2–1. Nature 473, 101–104 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Snyder, E.L. et al. Nkx2–1 represses a latent gastric differentiation program in lung adenocarcinoma. Mol. Cell 50, 185–199 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cheung, W.K. et al. Control of alveolar differentiation by the lineage transcription factors GATA6 and HOPX inhibits lung adenocarcinoma metastasis. Cancer Cell 23, 725–738 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kouros-Mehr, H. et al. GATA-3 links tumor differentiation and dissemination in a luminal breast cancer model. Cancer Cell 13, 141–152 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chou, J. et al. GATA3 suppresses metastasis and modulates the tumour microenvironment by regulating microRNA-29b expression. Nat. Cell Biol. 15, 201–213 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chakrabarti, R. et al. Elf5 inhibits the epithelial-mesenchymal transition in mammary gland development and breast cancer metastasis by transcriptionally repressing Snail2. Nat. Cell Biol. 14, 1212–1222 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Guo, W. et al. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 148, 1015–1028 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Nguyen, D.X. et al. WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell 138, 51–62 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Oskarsson, T. et al. Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat. Med. 17, 867–874 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Pratap, J. et al. Runx2 transcriptional activation of Indian Hedgehog and a downstream bone metastatic pathway in breast cancer cells. Cancer Res. 68, 7795–7802 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Gupta, G.P. et al. ID genes mediate tumor reinitiation during breast cancer lung metastasis. Proc. Natl. Acad. Sci. USA 104, 19506–19511 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Swarbrick, A., Roy, E., Allen, T. & Bishop, J.M. Id1 cooperates with oncogenic Ras to induce metastatic mammary carcinoma by subversion of the cellular senescence response. Proc. Natl. Acad. Sci. USA 105, 5402–5407 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Malanchi, I. et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481, 85–89 (2012).

    Article  CAS  Google Scholar 

  121. O'Connell, J.T. et al. VEGF-A and Tenascin-C produced by S100A4+ stromal cells are important for metastatic colonization. Proc. Natl. Acad. Sci. USA 108, 16002–16007 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Kii, I. et al. Incorporation of tenascin-C into the extracellular matrix by periostin underlies an extracellular meshwork architecture. J. Biol. Chem. 285, 2028–2039 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Reticker-Flynn, N.E. et al. A combinatorial extracellular matrix platform identifies cell-extracellular matrix interactions that correlate with metastasis. Nat. Commun. 3, 1122 (2012).

    Article  CAS  PubMed  Google Scholar 

  124. Suvà, M.L., Riggi, N. & Bernstein, B.E. Epigenetic reprogramming in cancer. Science 339, 1567–1570 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Ryu, S. et al. Suppression of miRNA-708 by polycomb group promotes metastases by calcium-induced cell migration. Cancer Cell 23, 63–76 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Tiwari, N. et al. Sox4 is a master regulator of epithelial-mesenchymal transition by controlling Ezh2 expression and epigenetic reprogramming. Cancer Cell 23, 768–783 (2013).

    Article  CAS  PubMed  Google Scholar 

  127. Gupta, R.A. et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464, 1071–1076 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Celià-Terrassa, T. et al. Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells. J. Clin. Invest. 122, 1849–1868 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ocaña, O.H. et al. Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell 22, 709–724 (2012).

    Article  CAS  PubMed  Google Scholar 

  130. Tsai, J.H., Donaher, J.L., Murphy, D.A., Chau, S. & Yang, J. Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell 22, 725–736 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tsuji, T. et al. Epithelial-mesenchymal transition induced by growth suppressor p12CDK2–AP1 promotes tumor cell local invasion but suppresses distant colony growth. Cancer Res. 68, 10377–10386 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Korpal, M. et al. Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nat. Med. 17, 1101–1108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Mejlvang, J. et al. Direct repression of cyclin D1 by SIP1 attenuates cell cycle progression in cells undergoing an epithelial mesenchymal transition. Mol. Biol. Cell 18, 4615–4624 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Joosse, S.A. et al. Changes in keratin expression during metastatic progression of breast cancer: impact on the detection of circulating tumor cells. Clin. Cancer Res. 18, 993–1003 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Zhang, L. et al. The identification and characterization of breast cancer CTCs competent for brain metastasis. Sci. Transl. Med. 5, 180ra148 (2013).

    Article  CAS  Google Scholar 

  136. Zheng, H. & Kang, Y. Multilayer control of the EMT master regulators. Oncogene published online, doi:10.1038/onc.2013.128 (22 April 2013).

    Article  CAS  PubMed  Google Scholar 

  137. Chaffer, C.L. & Weinberg, R.A. A perspective on cancer cell metastasis. Science 331, 1559–1564 (2011).

    Article  CAS  PubMed  Google Scholar 

  138. Frisch, S.M. The epithelial cell default-phenotype hypothesis and its implications for cancer. Bioessays 19, 705–709 (1997).

    Article  CAS  PubMed  Google Scholar 

  139. Gao, D. et al. Myeloid progenitor cells in the premetastatic lung promote metastases by inducing mesenchymal to epithelial transition. Cancer Res. 72, 1384–1394 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Yates, C.C., Shepard, C.R., Stolz, D.B. & Wells, A. Co-culturing human prostate carcinoma cells with hepatocytes leads to increased expression of E-cadherin. Br. J. Cancer 96, 1246–1252 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Chao, Y.L., Shepard, C.R. & Wells, A. Breast carcinoma cells re-express E-cadherin during mesenchymal to epithelial reverting transition. Mol. Cancer 9, 179 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Hüsemann, Y. et al. Systemic spread is an early step in breast cancer. Cancer Cell 13, 58–68 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Eyles, J. et al. Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma. J. Clin. Invest. 120, 2030–2039 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Banys, M. et al. Hematogenous and lymphatic tumor cell dissemination may be detected in patients diagnosed with ductal carcinoma in situ of the breast. Breast Cancer Res. Treat. 131, 801–808 (2012).

    Article  CAS  PubMed  Google Scholar 

  145. Sanger, N. et al. Disseminated tumor cells in the bone marrow of patients with ductal carcinoma in situ. Int. J. Cancer 129, 2522–2526 (2011).

    Article  CAS  PubMed  Google Scholar 

  146. Stoecklein, N.H. & Klein, C.A. Genetic disparity between primary tumours, disseminated tumour cells, and manifest metastasis. Int. J. Cancer 126, 589–598 (2010).

    Article  CAS  PubMed  Google Scholar 

  147. Makohon-Moore, A., Brosnan, J.A. & Iacobuzio-Donahue, C.A. Pancreatic cancer genomics: insights and opportunities for clinical translation. Genome Med. 5, 26 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kim, M.Y. et al. Tumor self-seeding by circulating cancer cells. Cell 139, 1315–1326 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Norton, L. & Massague, J. Is cancer a disease of self-seeding? Nat. Med. 12, 875–878 (2006).

    Article  CAS  PubMed  Google Scholar 

  150. Braun, S. et al. A pooled analysis of bone marrow micrometastasis in breast cancer. N. Engl. J. Med. 353, 793–802 (2005).

    Article  CAS  PubMed  Google Scholar 

  151. Bidard, F.C. et al. Disseminated tumor cells of breast cancer patients: a strong prognostic factor for distant and local relapse. Clin. Cancer Res. 14, 3306–3311 (2008).

    Article  CAS  PubMed  Google Scholar 

  152. Aft, R. et al. Effect of zoledronic acid on disseminated tumour cells in women with locally advanced breast cancer: an open label, randomised, phase 2 trial. Lancet Oncol. 11, 421–428 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Gnant, M. et al. Endocrine therapy plus zoledronic acid in premenopausal breast cancer. N. Engl. J. Med. 360, 679–691 (2009).

    Article  CAS  PubMed  Google Scholar 

  154. Comen, E., Norton, L. & Massague, J. Clinical implications of cancer self-seeding. Nat. Rev. Clin. Oncol. 8, 369–377 (2011).

    Article  PubMed  Google Scholar 

  155. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Xu, X. et al. Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 148, 886–895 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ding, L. et al. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464, 999–1005 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Wu, X. et al. Clonal selection drives genetic divergence of metastatic medulloblastoma. Nature 482, 529–533 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Liu, W. et al. Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nat. Med. 15, 559–565 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Yachida, S. et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467, 1114–1117 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Heitzer, E. et al. Complex tumor genomes inferred from single circulating tumor cells by array-CGH and next-generation sequencing. Cancer Res. 73, 2965–2975 (2013).

    Article  CAS  PubMed  Google Scholar 

  162. Campbell, P.J. et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467, 1109–1113 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Shah, S.P. et al. Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature 461, 809–813 (2009).

    Article  CAS  PubMed  Google Scholar 

  164. Vermaat, J.S. et al. Primary colorectal cancers and their subsequent hepatic metastases are genetically different: implications for selection of patients for targeted treatment. Clin. Cancer Res. 18, 688–699 (2012).

    Article  CAS  PubMed  Google Scholar 

  165. Kuukasjärvi, T. et al. Genetic heterogeneity and clonal evolution underlying development of asynchronous metastasis in human breast cancer. Cancer Res. 57, 1597–1604 (1997).

    PubMed  Google Scholar 

  166. Zong, C., Lu, S., Chapman, A.R. & Xie, X.S. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 338, 1622–1626 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Navin, N. et al. Tumour evolution inferred by single-cell sequencing. Nature 472, 90–94 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Gangnus, R., Langer, S., Breit, E., Pantel, K. & Speicher, M.R. Genomic profiling of viable and proliferative micrometastatic cells from early-stage breast cancer patients. Clin. Cancer Res. 10, 3457–3464 (2004).

    Article  CAS  PubMed  Google Scholar 

  169. Klein, C.A. et al. Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer. Lancet 360, 683–689 (2002).

    Article  CAS  PubMed  Google Scholar 

  170. Schmidt-Kittler, O. et al. From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc. Natl. Acad. Sci. USA 100, 7737–7742 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Meng, S. et al. Circulating tumor cells in patients with breast cancer dormancy. Clin. Cancer Res. 10, 8152–8162 (2004).

    Article  PubMed  Google Scholar 

  172. Steeg, P.S. Perspective: the right trials. Nature 485, S58–S59 (2012).

    Article  CAS  PubMed  Google Scholar 

  173. Coussens, L.M., Fingleton, B. & Matrisian, L.M. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295, 2387–2392 (2002).

    Article  CAS  PubMed  Google Scholar 

  174. Hu, G. et al. MTDH activation by 8q22 genomic gain promotes chemoresistance and metastasis of poor-prognosis breast cancer. Cancer Cell 15, 9–20 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Acharyya, S. et al. A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell 150, 165–178 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Gilbert, L.A. & Hemann, M.T. DNA damage-mediated induction of a chemoresistant niche. Cell 143, 355–366 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Carmeliet, P. & Jain, R.K. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat. Rev. Drug Discov. 10, 417–427 (2011).

    Article  CAS  PubMed  Google Scholar 

  178. Braun, S. et al. Lack of effect of adjuvant chemotherapy on the elimination of single dormant tumor cells in bone marrow of high-risk breast cancer patients. J. Clin. Oncol. 18, 80–86 (2000).

    Article  CAS  PubMed  Google Scholar 

  179. Townson, J.L. et al. Three-dimensional imaging and quantification of both solitary cells and metastases in whole mouse liver by magnetic resonance imaging. Cancer Res. 69, 8326–8331 (2009).

    Article  CAS  PubMed  Google Scholar 

  180. Naumov, G.N. et al. Ineffectiveness of doxorubicin treatment on solitary dormant mammary carcinoma cells or late-developing metastases. Breast Cancer Res. Treat. 82, 199–206 (2003).

    Article  CAS  PubMed  Google Scholar 

  181. Jaini, R. et al. An autoimmune-mediated strategy for prophylactic breast cancer vaccination. Nat. Med. 16, 799–803 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Pantel, K., Brakenhoff, R.H. & Brandt, B. Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat. Rev. Cancer 8, 329–340 (2008).

    Article  CAS  PubMed  Google Scholar 

  183. Goss, P.E. et al. Randomized trial of letrozole following tamoxifen as extended adjuvant therapy in receptor-positive breast cancer: updated findings from NCIC CTG MA.17. J. Natl. Cancer Inst. 97, 1262–1271 (2005).

    Article  CAS  PubMed  Google Scholar 

  184. Moy, B. & Goss, P.E. TEACH: Tykerb evaluation after chemotherapy. Clin. Breast Cancer 7, 489–492 (2007).

    Article  CAS  PubMed  Google Scholar 

  185. Sabnis, G., Goloubeva, O., Gilani, R., Macedo, L. & Brodie, A. Sensitivity to the aromatase inhibitor letrozole is prolonged after a “break” in treatment. Mol. Cancer Ther. 9, 46–56 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Goss, G.D. et al. Randomized, double-blind trial of carboplatin and paclitaxel with either daily oral cediranib or placebo in advanced non-small-cell lung cancer: NCIC clinical trials group BR24 study. J. Clin. Oncol. 28, 49–55 (2010).

    Article  CAS  PubMed  Google Scholar 

  187. Alberts, S.R. et al. Effect of oxaliplatin, fluorouracil, and leucovorin with or without cetuximab on survival among patients with resected stage III colon cancer: a randomized trial. J. Am. Med. Assoc. 307, 1383–1393 (2012).

    Article  CAS  Google Scholar 

  188. Loges, S., Mazzone, M., Hohensinner, P. & Carmeliet, P. Silencing or fueling metastasis with VEGF inhibitors: antiangiogenesis revisited. Cancer Cell 15, 167–170 (2009).

    Article  CAS  PubMed  Google Scholar 

  189. Polzer, B. & Klein, C.A. Metastasis awakening: the challenges of targeting minimal residual cancer. Nat. Med. 19, 274–275 (2013).

    Article  CAS  PubMed  Google Scholar 

  190. Maheswaran, S. et al. Detection of mutations in EGFR in circulating lung-cancer cells. N. Engl. J. Med. 359, 366–377 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Hannemann, J. et al. Quantitative high-resolution genomic analysis of single cancer cells. PLoS ONE 6, e26362 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Zhang, X.H. et al. Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell 16, 67–78 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Kobayashi, A. et al. Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone. J. Exp. Med. 208, 2641–2655 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Marshall, J.C. et al. Effect of inhibition of the lysophosphatidic acid receptor 1 on metastasis and metastatic dormancy in breast cancer. J. Natl. Cancer Inst. 104, 1306–1319 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Horak, C.E. et al. Nm23–H1 suppresses metastasis by inhibiting expression of the lysophosphatidic acid receptor EDG2. Cancer Res. 67, 11751–11759 (2007).

    Article  CAS  PubMed  Google Scholar 

  196. Horak, C.E., Lee, J.H., Marshall, J.C., Shreeve, S.M. & Steeg, P.S. The role of metastasis suppressor genes in metastatic dormancy. APMIS 116, 586–601 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Thiolloy, S. & Rinker-Schaeffer, C.W. Thinking outside the box: using metastasis suppressors as molecular tools. Semin. Cancer Biol. 21, 89–98 (2011).

    Article  CAS  PubMed  Google Scholar 

  198. Cook, L.M., Hurst, D.R. & Welch, D.R. Metastasis suppressors and the tumor microenvironment. Semin. Cancer Biol. 21, 113–122 (2011).

    Article  CAS  PubMed  Google Scholar 

  199. Gnant, M. Bisphosphonates in the prevention of disease recurrence: current results and ongoing trials. Curr. Cancer Drug Targets 9, 824–833 (2009).

    Article  CAS  PubMed  Google Scholar 

  200. Lipton, A. & Goessl, C. Clinical development of anti-RANKL therapies for treatment and prevention of bone metastasis. Bone 48, 96–99 (2011).

    Article  CAS  PubMed  Google Scholar 

  201. Barton, M.K. Denosumab an option for patients with bone metastasis from breast cancer. CA Cancer J. Clin. 61, 135–136 (2011).

    Article  PubMed  Google Scholar 

  202. Buijs, J.T., Stayrook, K.R. & Guise, T.A. TGF-β in the bone microenvironment: role in breast cancer metastases. Cancer Microenviron. 4, 261–281 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Hensel, J.A., Flaig, T.W. & Theodorescu, D. Clinical opportunities and challenges in targeting tumour dormancy. Nat. Rev. Clin. Oncol. 10, 41–51 (2013).

    Article  CAS  PubMed  Google Scholar 

  204. Uhr, J.W. & Pantel, K. Controversies in clinical cancer dormancy. Proc. Natl. Acad. Sci. USA 108, 12396–12400 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Quesnel, B. Tumor dormancy and immunoescape. APMIS 116, 685–694 (2008).

    Article  PubMed  Google Scholar 

  206. Kantoff, P.W. et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363, 411–422 (2010).

    Article  CAS  PubMed  Google Scholar 

  207. Hodi, F.S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Robert, C. et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med. 364, 2517–2526 (2011).

    Article  CAS  PubMed  Google Scholar 

  209. Weichselbaum, R.R. & Hellman, S. Oligometastases revisited. Nat. Rev. Clin. Oncol. 8, 378–382 (2011).

    Article  CAS  PubMed  Google Scholar 

  210. Pawlik, T.M. et al. Effect of surgical margin status on survival and site of recurrence after hepatic resection for colorectal metastases. Ann. Surg. 241, 715–722, discussion 722–714 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Lussier, Y.A. et al. Oligo- and polymetastatic progression in lung metastasis(es) patients is associated with specific microRNAs. PLoS ONE 7, e50141 (2012); erratum 7, e50141 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Pantel, K., Diaz, L.A. Jr. & Polyak, K. Tracking tumor resistance using 'liquid biopsies'. Nat. Med. 19, 676–677 (2013).

    Article  CAS  PubMed  Google Scholar 

  213. Valastyan, S. et al. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 137, 1032–1046 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Gatenby, R.A., Silva, A.S., Gillies, R.J. & Frieden, B.R. Adaptive therapy. Cancer Res. 69, 4894–4903 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Das Thakur, M. et al. Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance. Nature 494, 251–255 (2013).

    Article  CAS  PubMed  Google Scholar 

  216. Seruga, B. & Tannock, I.F. Intermittent androgen blockade should be regarded as standard therapy in prostate cancer. Nat. Clin. Pract. Oncol. 5, 574–576 (2008).

    Article  CAS  PubMed  Google Scholar 

  217. Klotz, L. Intermittent versus continuous androgen deprivation therapy in advanced prostate cancer. Curr. Urol. Rep. 14, 159–167 (2013).

    Article  PubMed  Google Scholar 

  218. Pasquier, E., Kavallaris, M. & Andre, N. Metronomic chemotherapy: new rationale for new directions. Nat. Rev. Clin. Oncol. 7, 455–465 (2010).

    Article  PubMed  Google Scholar 

  219. Hanahan, D., Bergers, G. & Bergsland, E. Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J. Clin. Invest. 105, 1045–1047 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Nguyen, D.X., Bos, P.D. & Massague, J. Metastasis: from dissemination to organ-specific colonization. Nat. Rev. Cancer 9, 274–284 (2009).

    Article  CAS  PubMed  Google Scholar 

  221. van de Wouw, A.J., Janssen-Heijnen, M.L., Coebergh, J.W. & Hillen, H.F. Epidemiology of unknown primary tumours; incidence and population-based survival of 1285 patients in Southeast Netherlands, 1984–1992. Eur. J. Cancer 38, 409–413 (2002).

    Article  CAS  PubMed  Google Scholar 

  222. Denève, E. et al. Capture of viable circulating tumor cells in the liver of colorectal cancer patients. Clin. Chem. 59, 1384–1392 (2013).

    Article  CAS  PubMed  Google Scholar 

  223. Sugarbaker, P.H. Metastatic inefficiency: the scientific basis for resection of liver metastases from colorectal cancer. J. Surg. Oncol. Suppl. 3, 158–160 (1993).

    Article  CAS  PubMed  Google Scholar 

  224. Heiss, M.M. et al. Individual development and uPA-receptor expression of disseminated tumour cells in bone marrow: a reference to early systemic disease in solid cancer. Nat. Med. 1, 1035–1039 (1995).

    Article  CAS  PubMed  Google Scholar 

  225. Murtaza, M. et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497, 108–112 (2013).

    Article  CAS  PubMed  Google Scholar 

  226. Dawson, S.J. et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N. Engl. J. Med. 368, 1199–1209 (2013).

    Article  CAS  PubMed  Google Scholar 

  227. Parkinson, D.R. et al. Considerations in the development of circulating tumor cell technology for clinical use. J. Transl. Med. 10, 138 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Kamiya, N. et al. Clinical usefulness of bone markers in prostate cancer with bone metastasis. Int. J. Urol. 19, 968–979 (2012).

    Article  CAS  PubMed  Google Scholar 

  229. Ell, B. et al. Tumor-induced osteoclast miRNA changes as regulators and biomarkers of osteolytic bone metastasis. Cancer Cell (in the press).

  230. Kwong, G.A. et al. Mass-encoded synthetic biomarkers for multiplexed urinary monitoring of disease. Nat. Biotechnol. 31, 63–70 (2013).

    Article  CAS  PubMed  Google Scholar 

  231. Erler, J.T. et al. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15, 35–44 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Kim, R.S. et al. Dormancy signatures and metastasis in estrogen receptor positive and negative breast cancer. PLoS ONE 7, e35569 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Kelloff, G.J. et al. Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin. Cancer Res. 11, 2785–2808 (2005).

    Article  CAS  PubMed  Google Scholar 

  234. Walker-Samuel, S. et al. In vivo imaging of glucose uptake and metabolism in tumors. Nat. Med. 19, 1067–1072 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Padhani, A.R., Krohn, K.A., Lewis, J.S. & Alber, M. Imaging oxygenation of human tumours. Eur. Radiol. 17, 861–872 (2007).

    Article  PubMed  Google Scholar 

  236. Choe, Y.S. & Lee, K.H. Targeted in vivo imaging of angiogenesis: present status and perspectives. Curr. Pharm. Des. 13, 17–31 (2007).

    Article  CAS  PubMed  Google Scholar 

  237. Emblem, K.E. et al. Vessel architectural imaging identifies cancer patient responders to anti-angiogenic therapy. Nat. Med. 19, 1178–1183 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Benz, M.R. et al. 18F-FDG PET/CT for monitoring treatment responses to the epidermal growth factor receptor inhibitor erlotinib. J. Nucl. Med. 52, 1684–1689 (2011).

    Article  CAS  PubMed  Google Scholar 

  239. Hicke, B.J. et al. Tumor targeting by an aptamer. J. Nucl. Med. 47, 668–678 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of our laboratories for helpful discussions and H.A. Smith for critical reading of the manuscript. We also apologize to the many investigators whose important studies could not be cited directly here because of space limitations. The work was supported by a Charlotte Elizabeth Procter Fellowship to L.W., grants from the European Research Council (Advanced Investigator Grant 'DISSECT'), the Deutsche Forschungsgemeinschaft and the German Minister of Education and Research (BMBF) to K.P. and grants from the Brewster Foundation, the Champalimaud Foundation, the US Department of Defense, Komen for the Cure and the US National Institutes of Health to Y.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yibin Kang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, L., Pantel, K. & Kang, Y. Tumor metastasis: moving new biological insights into the clinic. Nat Med 19, 1450–1464 (2013). https://doi.org/10.1038/nm.3391

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3391

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer