[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epigenetic mechanisms in neurological disease

Abstract

The exploration of brain epigenomes, which consist of various types of DNA methylation and covalent histone modifications, is providing new and unprecedented insights into the mechanisms of neural development, neurological disease and aging. Traditionally, chromatin defects in the brain were considered static lesions of early development that occurred in the context of rare genetic syndromes, but it is now clear that mutations and maladaptations of the epigenetic machinery cover a much wider continuum that includes adult-onset neurodegenerative disease. Here, we describe how recent advances in neuroepigenetics have contributed to an improved mechanistic understanding of developmental and degenerative brain disorders, and we discuss how they could influence the development of future therapies for these conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The epigenome and chromatin organization.

Katie Vicari

Figure 2: Monogenetic brain disorders with a heterochromatin defect.

Katie Vicari

Similar content being viewed by others

References

  1. Numata, S. et al. DNA methylation signatures in development and aging of the human prefrontal cortex. Am. J. Hum. Genet. 90, 260–272 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Siegmund, K.D. et al. DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons. PLoS One 2, e895 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Hernandez, D.G. et al. Distinct DNA methylation changes highly correlated with chronological age in the human brain. Hum. Mol. Genet. 20, 1164–1172 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cheung, I. et al. Developmental regulation and individual differences of neuronal H3K4me3 epigenomes in the prefrontal cortex. Proc. Natl. Acad. Sci. USA 107, 8824–8829 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Klein, C.J. et al. Mutations in DNMT1 cause hereditary sensory neuropathy with dementia and hearing loss. Nat. Genet. 43, 595–600 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Winkelmann, J. et al. Mutations in DNMT1 cause autosomal dominant cerebellar ataxia, deafness and narcolepsy. Hum. Mol. Genet. 21, 2205–2210 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Peter, C.J. & Akbarian, S. Balancing histone methylation activities in psychiatric disorders. Trends Mol. Med. 17, 372–379 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chuang, D.M., Leng, Y., Marinova, Z., Kim, H.J. & Chiu, C.T. Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends Neurosci. 32, 591–601 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Baltan, S., Murphy, S.P., Danilov, C.A., Bachleda, A. & Morrison, R.S. Histone deacetylase inhibitors preserve white-matter structure and function during ischemia by conserving ATP and reducing excitotoxicity. J. Neurosci. 31, 3990–3999 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fischer, A., Sananbenesi, F., Mungenast, A. & Tsai, L.H. Targeting the correct HDAC(s) to treat cognitive disorders. Trends Pharmacol. Sci. 31, 605–617 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Tsou, A.Y., Friedman, L.S., Wilson, R.B. & Lynch, D.R. Pharmacotherapy for Friedreich ataxia. CNS Drugs 23, 213–223 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Day, J.J. & Sweatt, J.D. DNA methylation and memory formation. Nat. Neurosci. 13, 1319–1323 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Erraji-Benchekroun, L. et al. Molecular aging in human prefrontal cortex is selective and continuous throughout adult life. Biol. Psychiatry 57, 549–558 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Tang, B. et al. Normal human aging and early-stage schizophrenia share common molecular profiles. Aging Cell 8, 339–342 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Lu, T. et al. Gene regulation and DNA damage in the ageing human brain. Nature 429, 883–891 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Szulwach, K.E. et al. 5-hmC–mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat. Neurosci. 14, 1607–1616 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stadler, F. et al. Histone methylation at gene promoters is associated with developmental regulation and region-specific expression of ionotropic and metabotropic glutamate receptors in human brain. J. Neurochem. 94, 324–336 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, C.M., Tsai, S.N., Yew, T.W., Kwan, Y.W. & Ngai, S.M. Identification of histone methylation multiplicities patterns in the brain of senescence-accelerated prone mouse 8. Biogerontology 11, 87–102 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Peleg, S. et al. Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328, 753–756 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Hargreaves, D.C., Horng, T. & Medzhitov, R. Control of inducible gene expression by signal-dependent transcriptional elongation. Cell 138, 129–145 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Copray, S., Huynh, J.L., Sher, F., Casaccia-Bonnefil, P. & Boddeke, E. Epigenetic mechanisms facilitating oligodendrocyte development, maturation, and aging. Glia 57, 1579–1587 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yankner, B.A., Lu, T. & Loerch, P. The aging brain. Annu. Rev. Pathol. 3, 41–66 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Ho, L. & Crabtree, G.R. Chromatin remodelling during development. Nature 463, 474–484 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fuentes, P., Canovas, J., Berndt, F.A., Noctor, S.C. & Kukuljan, M. CoREST/LSD1 control the development of pyramidal cortical neurons. Cereb. Cortex 22, 1431–1441 (2012).

    Article  PubMed  Google Scholar 

  25. Hansen, R.S. et al. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc. Natl. Acad. Sci. USA 96, 14412–14417 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Okano, M., Bell, D.W., Haber, D.A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Jin, B. et al. DNA methyltransferase 3B (DNMT3B) mutations in ICF syndrome lead to altered epigenetic modifications and aberrant expression of genes regulating development, neurogenesis and immune function. Hum. Mol. Genet. 17, 690–709 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. de Greef, J.C. et al. Mutations in ZBTB24 are associated with immunodeficiency, centromeric instability, and facial anomalies syndrome type 2. Am. J. Hum. Genet. 88, 796–804 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chouery, E. et al. A novel deletion in ZBTB24 in a Lebanese family with immunodeficiency, centromeric instability and facial anomalies syndrome type 2. Clin. Genet. doi: 10.1111/j.1399-0004.2011.01783.x (2011).

  30. Amir, R.E. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG–binding protein-2. Nat. Genet. 23, 185–188 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Ramocki, M.B. et al. Autism and other neuropsychiatric symptoms are prevalent in individuals with MECP2 duplication syndrome. Ann. Neurol. 66, 771–782 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Agarwal, N. et al. MeCP2 Rett mutations affect large-scale chromatin organization. Hum. Mol. Genet. 20, 4187–4195. (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Singleton, M.K. et al. MeCP2 is required for global heterochromatic and nucleolar changes during activity-dependent neuronal maturation. Neurobiol. Dis. 43, 190–200 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Akbarian, S. et al. Expression pattern of the Rett syndrome gene MeCP2 in primate prefrontal cortex. Neurobiol. Dis. 8, 784–791 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Chen, R.Z., Akbarian, S., Tudor, M. & Jaenisch, R. Deficiency of methyl-CpG–binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat. Genet. 27, 327–331 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Skene, P.J. et al. Neuronal MeCP2 is expressed at near–histone-octamer levels and globally alters the chromatin state. Mol. Cell 37, 457–468 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Leonhardt, H., Page, A.W., Weier, H.U. & Bestor, T.H. A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell 71, 865–873 (1992).

    Article  CAS  PubMed  Google Scholar 

  38. Easwaran, H.P., Schermelleh, L., Leonhardt, H. & Cardoso, M.C. Replication-independent chromatin loading of Dnmt1 during G2 and M phases. EMBO Rep. 5, 1181–1186 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fan, G. et al. DNA hypomethylation perturbs the function and survival of CNS neurons in postnatal animals. J. Neurosci. 21, 788–797 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bérubé, N.G. et al. The chromatin-remodeling protein ATRX is critical for neuronal survival during corticogenesis. J. Clin. Invest. 115, 258–267 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Seah, C. et al. Neuronal death resulting from targeted disruption of the Snf2 protein ATRX is mediated by p53. J. Neurosci. 28, 12570–12580 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shioda, N. et al. Aberrant calcium/calmodulin–dependent protein kinase II (CaMKII) activity is associated with abnormal dendritic spine morphology in the ATRX mutant mouse brain. J. Neurosci. 31, 346–358 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kaufmann, W.E. & Moser, H.W. Dendritic anomalies in disorders associated with mental retardation. Cereb. Cortex 10, 981–991 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Law, M.J. et al. ATR-X syndrome protein targets tandem repeats and influences allele-specific expression in a size-dependent manner. Cell 143, 367–378 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Lewis, P.W., Elsaesser, S.J., Noh, K.M., Stadler, S.C. & Allis, C.D. Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc. Natl. Acad. Sci. USA 107, 14075–14080 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Eustermann, S. et al. Combinatorial readout of histone H3 modifications specifies localization of ATRX to heterochromatin. Nat. Struct. Mol. Biol. 18, 777–782 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Baumann, C., Viveiros, M.M. & De La Fuente, R. Loss of maternal ATRX results in centromere instability and aneuploidy in the mammalian oocyte and preimplantation embryo. PLoS Genet. 6, e1001137 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Steffan, J.S. et al. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413, 739–743 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Ferrante, R.J. et al. Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington's disease mice. J. Neurosci. 23, 9418–9427 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Desplats, P. et al. α-synuclein sequesters Dnmt1 from the nucleus: a novel mechanism for epigenetic alterations in Lewy body diseases. J. Biol. Chem. 286, 9031–9037 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chestnut, B.A. et al. Epigenetic regulation of motor-neuron cell death through DNA methylation. J. Neurosci. 31, 16619–16636 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shock, L.S., Thakkar, P.V., Peterson, E.J., Moran, R.G. & Taylor, S.M. DNA methyltransferase 1, cytosine methylation and cytosine hydroxymethylation in mammalian mitochondria. Proc. Natl. Acad. Sci. USA 108, 3630–3635 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nucifora, F.C. Jr. et al. Interference by huntingtin and atrophin-1 with CBP-mediated transcription leading to cellular toxicity. Science 291, 2423–2428 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Caccamo, A., Maldonado, M.A., Bokov, A.F., Majumder, S. & Oddo, S. CBP gene transfer increases BDNF levels and ameliorates learning and memory deficits in a mouse model of Alzheimer's disease. Proc. Natl. Acad. Sci. USA 107, 22687–22692 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wilburn, B. et al. An antisense CAG repeat transcript at JPH3 locus mediates expanded polyglutamine protein toxicity in Huntington's disease–like 2 mice. Neuron 70, 427–440 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kazemi-Esfarjani, P. & La Spada, A.R. Déjà vu with a twist: transglutaminases in bioenergetics and transcriptional dysfunction in Huntington's disease. EMBO Mol. Med. 2, 335–337 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Munsie, L. et al. Mutant huntingtin causes defective actin remodeling during stress: defining a new role for transglutaminase-2 in neurodegenerative disease. Hum. Mol. Genet. 20, 1937–1951 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. McConoughey, S.J. et al. Inhibition of transglutaminase-2 mitigates transcriptional dysregulation in models of Huntington disease. EMBO Mol. Med. 2, 349–370 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ryu, H. et al. ESET/SETDB1 gene expression and histone H3 (K9) trimethylation in Huntington's disease. Proc. Natl. Acad. Sci. USA 103, 19176–19181 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hu, Y. et al. Transcriptional modulator H2A histone family, member Y (H2AFY) marks Huntington disease activity in man and mouse. Proc. Natl. Acad. Sci. USA 108, 17141–17146 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Stack, E.C. et al. Modulation of nucleosome dynamics in Huntington's disease. Hum. Mol. Genet. 16, 1164–1175 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Morris, M.J., Karra, A.S. & Monteggia, L.M. Histone deacetylases govern cellular mechanisms underlying behavioral and synaptic plasticity in the developing and adult brain. Behav. Pharmacol. 21, 409–419 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Covington, H.E. III et al. Antidepressant actions of histone deacetylase inhibitors. J. Neurosci. 29, 11451–11460 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Schroeder, F.A., Lin, C.L., Crusio, W.E. & Akbarian, S. Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biol. Psychiatry 62, 55–64 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Zhao, W. et al. Negative regulation of the deacetylase SIRT1 by DBC1. Nature 451, 587–590 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dokmanovic, M. & Marks, P.A. Prospects: histone deacetylase inhibitors. J. Cell. Biochem. 96, 293–304 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Jeong, H. et al. Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway. Nat. Med. 18, 159–165 (2012).

    Article  CAS  Google Scholar 

  68. Libert, S. et al. SIRT1 activates MAO-A in the brain to mediate anxiety and exploratory drive. Cell 147, 1459–1472 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rohrer, J.D. et al. Clinical and neuroanatomical signatures of tissue pathology in frontotemporal lobar degeneration. Brain 134, 2565–2581 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Cenik, B. et al. Suberoylanilide hydroxamic acid (vorinostat) upregulates progranulin transcription: rational therapeutic approach to frontotemporal dementia. J. Biol. Chem. 286, 16101–16108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Min, S.W. et al. Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 67, 953–966 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Donmez, G., Wang, D., Cohen, D.E. & Guarente, L. SIRT1 suppresses β-amyloid production by activating the α-secretase gene ADAM10. Cell 142, 320–332 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Green, K.N. et al. Nicotinamide restores cognition in Alzheimer's disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau. J. Neurosci. 28, 11500–11510 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Outeiro, T.F. et al. Sirtuin 2 inhibitors rescue α-synuclein–mediated toxicity in models of Parkinson's disease. Science 317, 516–519 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Hsieh, J., Nakashima, K., Kuwabara, T., Mejia, E. & Gage, F.H. Histone deacetylase inhibition–mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc. Natl. Acad. Sci. USA 101, 16659–16664 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pedre, X. et al. Changed histone acetylation patterns in normal-appearing white matter and early multiple sclerosis lesions. J. Neurosci. 31, 3435–3445 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Liu, J. & Casaccia, P. Epigenetic regulation of oligodendrocyte identity. Trends Neurosci. 33, 193–201 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Coufal, N.G. et al. Ataxia telangiectasia mutated (ATM) modulates long interspersed element-1 (L1) retrotransposition in human neural stem cells. Proc. Natl. Acad. Sci. USA 108, 20382–20387 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rahman, S. et al. The Brd4 extraterminal domain confers transcription activation independent of pTEFb by recruiting multiple proteins, including NSD3. Mol. Cell. Biol. 31, 2641–2652 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Delmore, J.E. et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146, 904–917 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nicodeme, E. et al. Suppression of inflammation by a synthetic histone mimic. Nature 468, 1119–1123 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lein, E.S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Kubicek, S. et al. Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol. Cell 25, 473–481 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Maze, I. et al. Essential role of the histone methyltransferase G9a in cocaine-induced plasticity. Science 327, 213–216 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kelly, T.K., De Carvalho, D.D. & Jones, P.A. Epigenetic modifications as therapeutic targets. Nat. Biotechnol. 28, 1069–1078 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Levenson, J.M. et al. Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. J. Biol. Chem. 281, 15763–15773 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Han, J. et al. Effect of 5-aza-2-deoxycytidine microinjecting into hippocampus and prelimbic cortex on acquisition and retrieval of cocaine-induced place preference in C57BL/6 mice. Eur. J. Pharmacol. 642, 93–98 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Miller, C.A. & Sweatt, J.D. Covalent modification of DNA regulates memory formation. Neuron 53, 857–869 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. LaPlant, Q. et al. Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nat. Neurosci. 13, 1137–1143 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lubin, F.D., Roth, T.L. & Sweatt, J.D. Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J. Neurosci. 28, 10576–10586 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Miller, C.A. et al. Cortical DNA methylation maintains remote memory. Nat. Neurosci. 13, 664–666 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Endres, M., Fan, G., Meisel, A., Dirnagl, U. & Jaenisch, R. Effects of cerebral ischemia in mice lacking DNA methyltransferase-1 in postmitotic neurons. Neuroreport 12, 3763–3766 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Endres, M. et al. DNA methyltransferase contributes to delayed ischemic brain injury. J. Neurosci. 20, 3175–3181 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Salerno, S. et al. Recent advances in the development of dual topoisomerase I and II inhibitors as anticancer drugs. Curr. Med. Chem. 17, 4270–4290 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Huang, H.S. et al. Topoisomerase inhibitors unsilence the dormant allele of Ube3a in neurons. Nature 481, 185–189 (2012).

    Article  CAS  Google Scholar 

  97. Bressler, J. et al. The SNRPN promoter is not required for genomic imprinting of the Prader-Willi/Angelman domain in mice. Nat. Genet. 28, 232–240 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Reik, W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447, 425–432 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Kishino, T., Lalande, M. & Wagstaff, J. UBE3A/E6-AP mutations cause Angelman syndrome. Nat. Genet. 15, 70–73 (1997).

    Article  CAS  PubMed  Google Scholar 

  100. Matsuura, T. et al. De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome. Nat. Genet. 15, 74–77 (1997).

    Article  CAS  PubMed  Google Scholar 

  101. Sutcliffe, J.S. et al. The E6-Ap ubiquitin-protein ligase (UBE3A) gene is localized within a narrowed Angelman syndrome critical region. Genome Res. 7, 368–377 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Porteus, M.H. & Baltimore, D. Chimeric nucleases stimulate gene targeting in human cells. Science 300, 763 (2003).

    Article  PubMed  Google Scholar 

  103. Bogdanove, A.J. & Voytas, D.F. TAL effectors: customizable proteins for DNA targeting. Science 333, 1843–1846 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Miśkiewicz, K. et al. ELP3 controls active zone morphology by acetylating the ELKS family member Bruchpilot. Neuron 72, 776–788 (2011).

    Article  PubMed  CAS  Google Scholar 

  105. Roelfsema, J.H. & Peters, D.J. Rubinstein-Taybi syndrome: clinical and molecular overview. Expert Rev. Mol. Med. 9, 1–16 (2007).

    Article  PubMed  Google Scholar 

  106. Ehrlich, M. et al. ICF, an immunodeficiency syndrome: DNA methyltransferase 3B involvement, chromosome anomalies and gene dysregulation. Autoimmunity 41, 253–271 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Michelson, D.J. et al. Evidence report: genetic and metabolic testing on children with global developmental delay: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology 77, 1629–1635 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Adegbola, A., Gao, H., Sommer, S. & Browning, M. A novel mutation in JARID1C/SMCX in a patient with autism spectrum disorder (ASD). Am. J. Med. Genet. A. 146A, 505–511 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Kleefstra, T. et al. Further clinical and molecular delineation of the 9q subtelomeric deletion syndrome supports a major contribution of EHMT1 haploinsufficiency to the core phenotype. J. Med. Genet. 46, 598–606 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Kirov, G. et al. De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol. Psychiatry 17, 142–153 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Verhoeven, W.M., Egger, J.I., Vermeulen, K., van de Warrenburg, B.P. & Kleefstra, T. Kleefstra syndrome in three adult patients: further delineation of the behavioral and neurological phenotype shows aspects of a neurodegenerative course. Am. J. Med. Genet. A. 155, 2409–2415 (2011).

    Article  CAS  Google Scholar 

  112. Berdasco, M. et al. Epigenetic inactivation of the Sotos overgrowth syndrome gene histone methyltransferase NSD1 in human neuroblastoma and glioma. Proc. Natl. Acad. Sci. USA 106, 21830–21835 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kleine-Kohlbrecher, D. et al. A functional link between the histone demethylase PHF8 and the transcription factor ZNF711 in X-linked mental retardation. Mol. Cell 38, 165–178 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Fortschegger, K. et al. PHF8 targets histone methylation and RNA polymerase II to activate transcription. Mol. Cell. Biol. 30, 3286–3298 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Pereira, P.M., Schneider, A., Pannetier, S., Heron, D. & Hanauer, A. Coffin-Lowry syndrome. Eur. J. Hum. Genet. 18, 627–633 (2010).

    Article  PubMed  CAS  Google Scholar 

  116. Percy, A.K. Rett syndrome: exploring the autism link. Arch. Neurol. 68, 985–989 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Rodríguez-Paredes, M. & Esteller, M. Cancer epigenetics reaches mainstream oncology. Nat. Med. 17, 330–339 (2011).

    Article  PubMed  CAS  Google Scholar 

  118. Li, G. & Reinberg, D. Chromatin higher-order structures and gene regulation. Curr. Opin. Genet. Dev. 21, 175–186 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kriaucionis, S. & Heintz, N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324, 929–930 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Jin, S.G., Wu, X., Li, A.X. & Pfeifer, G.P. Genomic mapping of 5-hydroxymethylcytosine in the human brain. Nucleic Acids Res. 39, 5015–5024 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Song, C.X. et al. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat. Biotechnol. 29, 68–72 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. Maunakea, A.K. et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466, 253–257 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tan, M. et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146, 1016–1028 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Taverna, S.D., Li, H., Ruthenburg, A.J., Allis, C.D. & Patel, D.J. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat. Struct. Mol. Biol. 14, 1025–1040 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhou, V.W., Goren, A. & Bernstein, B.E. Charting histone modifications and the functional organization of mammalian genomes. Nat. Rev. Genet. 12, 7–18 (2011).

    Article  PubMed  CAS  Google Scholar 

  127. Woodcock, C.L. Chromatin architecture. Curr. Opin. Struct. Biol. 16, 213–220 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Jin, C. & Felsenfeld, G. Nucleosome stability mediated by histone variants H3.3 and H2A.Z. Genes Dev. 21, 1519–1529 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Woodcock, C.L., Skoultchi, A.I. & Fan, Y. Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length. Chromosome Res. 14, 17–25 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Pearson, E.C., Bates, D.L., Prospero, T.D. & Thomas, J.O. Neuronal nuclei and glial nuclei from mammalian cerebral cortex. Nucleosome repeat lengths, DNA contents and H1 contents. Eur. J. Biochem. 144, 353–360 (1984).

    Article  CAS  PubMed  Google Scholar 

  131. Ghosh, R.P., Horowitz-Scherer, R.A., Nikitina, T., Shlyakhtenko, L.S. & Woodcock, C.L. MeCP2 binds cooperatively to its substrate and competes with histone H1 for chromatin binding sites. Mol. Cell. Biol. 30, 4656–4670 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Henikoff, S. & Shilatifard, A. Histone modification: cause or cog? Trends Genet. 27, 389–396 (2011).

    Article  CAS  PubMed  Google Scholar 

  133. Robison, A.J. & Nestler, E.J. Transcriptional and epigenetic mechanisms of addiction. Nat. Rev. Neurosci. 12, 623–637 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Day, J.J. & Sweatt, J.D. Epigenetic mechanisms in cognition. Neuron 70, 813–829 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Guo, J.U., Su, Y., Zhong, C., Ming, G.L. & Song, H. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145, 423–434 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bhutani, N., Burns, D.M. & Blau, H.M. DNA demethylation dynamics. Cell 146, 866–872 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Copeland, R.A., Solomon, M.E. & Richon, V.M. Protein methyltransferases as a target class for drug discovery. Nat. Rev. Drug Discov. 8, 724–732 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Rotili, D. & Mai, A. Targeting histone demethylases: a new avenue for the fight against cancer. Genes Canc. 2, 663–679 (2011).

    Article  CAS  Google Scholar 

  139. Vermeulen, M. et al. Quantitative-interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell 142, 967–980 (2010).

    Article  CAS  PubMed  Google Scholar 

  140. Chao, H.T. & Zoghbi, H.Y. MeCP2: only 100% will do. Nat. Neurosci. 15, 176–177 (2012).

    Article  CAS  PubMed  Google Scholar 

  141. Samaco, R.C. et al. Crh and Oprm1 mediate anxiety-related behavior and social approach in a mouse model of MECP2 duplication syndrome. Nat. Genet. 44, 206–211 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Goffin, D. et al. Rett syndrome mutation MeCP2 T158A disrupts DNA binding, protein stability and ERP responses. Nat. Neurosci. 15, 274–283 (2012).

    Article  CAS  Google Scholar 

  143. Tao, J. et al. Phosphorylation of MeCP2 at serine 80 regulates its chromatin association and neurological function. Proc. Natl. Acad. Sci. USA 106, 4882–4887 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Li, H., Zhong, X., Chau, K.F., Williams, E.C. & Chang, Q. Loss of activity-induced phosphorylation of MeCP2 enhances synaptogenesis, LTP and spatial memory. Nat. Neurosci. 14, 1001–1008 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Kazazian, H.H. Jr. Mobile elements: drivers of genome evolution. Science 303, 1626–1632 (2004).

    Article  CAS  PubMed  Google Scholar 

  146. Cordaux, R. & Batzer, M.A. The impact of retrotransposons on human genome evolution. Nat. Rev. Genet. 10, 691–703 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Baillie, J.K. et al. Somatic retrotransposition alters the genetic landscape of the human brain. Nature 479, 534–537 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Coufal, N.G. et al. L1 retrotransposition in human neural progenitor cells. Nature 460, 1127–1131 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Singer, T., McConnell, M.J., Marchetto, M.C., Coufal, N.G. & Gage, F.H. LINE-1 retrotransposons: mediators of somatic variation in neuronal genomes? Trends Neurosci. 33, 345–354 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Muotri, A.R., Zhao, C., Marchetto, M.C. & Gage, F.H. Environmental influence on L1 retrotransposons in the adult hippocampus. Hippocampus 19, 1002–1007 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Maze, I. et al. Cocaine dynamically regulates heterochromatin and repetitive element unsilencing in nucleus accumbens. Proc. Natl. Acad. Sci. USA 108, 3035–3040 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Slotkin, R.K. & Martienssen, R. Transposable elements and the epigenetic regulation of the genome. Nat. Rev. Genet. 8, 272–285 (2007).

    Article  CAS  PubMed  Google Scholar 

  153. Muotri, A.R. et al. Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435, 903–910 (2005).

    Article  CAS  PubMed  Google Scholar 

  154. Kuwabara, T. et al. Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis. Nat. Neurosci. 12, 1097–1105 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Muotri, A.R. et al. L1 retrotransposition in neurons is modulated by MeCP2. Nature 468, 443–446 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the authors' laboratory is supported by funds from the US National Institutes of Health (National Institute of Neurological Disorders and Stroke, National Institute of Mental Health, National Institute on Drug Abuse), the US Defense Advanced Research Projects Agency and Autism Speaks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Schahram Akbarian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakovcevski, M., Akbarian, S. Epigenetic mechanisms in neurological disease. Nat Med 18, 1194–1204 (2012). https://doi.org/10.1038/nm.2828

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2828

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing