[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The LIM protein AJUBA promotes colorectal cancer cell survival through suppression of JAK1/STAT1/IFIT2 network

Abstract

The LIM protein AJUBA is a scaffold protein participating in the regulation of cell adhesion, mitosis, DNA damage, cell differentiation, proliferation, migration and gene transcription. However, its roles in tumorigenesis and progression are poorly defined. Here, we report that AJUBA is highly expressed in colorectal cancer (CRC) and promotes CRC cell growth in culture and in xenografted mice via an inhibition of apoptosis. AJUBA represses the expression of IFIT2 gene, an interferon-stimulated gene and a known apoptosis inducer and tumour suppressor to mediate its resistance to apoptosis. Mechanistic investigations reveal that AJUBA specifically binds the FERM domain of JAK1 to dissociate JAK1 from the IFNγ recepter, resulting in an inhibition of STAT1 phosporylation and concomitantly its nuclear translocation. Clinically, the level of AJUBA in CRC specimens is negatively correlated with the levels of IFIT2 and pSTAT1. Collectively, these studies demonstrate that AJUBA can promote CRC growth via inhibiting apoptosis and serve as a target for the therapeutics and a marker for diagnosis of CRC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Hirota T, Kunitoku N, Sasayama T, Marumoto T, Zhang D, Nitta M et al. Aurora-A and an interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells. Cell 2003; 114: 585–598.

    Article  CAS  PubMed  Google Scholar 

  2. Schimizzi GV, Longmore GD . Ajuba proteins. Curr Biol: CB 2015; 25: R445–R446.

    Article  CAS  PubMed  Google Scholar 

  3. Burglin TR, Affolter M . Homeodomain proteins: an update. Chromosoma 2016; 125: 497–521.

    Article  CAS  PubMed  Google Scholar 

  4. Langer EM, Feng Y, Zhaoyuan H, Rauscher FJ 3rd, Kroll KL, Longmore GD, Ajuba LIM . proteins are snail/slug corepressors required for neural crest development in Xenopus. Dev Cell 2008; 14: 424–436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Goyal RK, Lin P, Kanungo J, Payne AS, Muslin AJ, Longmore GD . Ajuba, a novel LIM protein, interacts with Grb2, augments mitogen-activated protein kinase activity in fibroblasts, and promotes meiotic maturation of Xenopus oocytes in a Grb2- and Ras-dependent manner. Mol Cell Biol 1999; 19: 4379–4389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pratt SJ, Epple H, Ward M, Feng Y, Braga VM, Longmore GD . The LIM protein Ajuba influences p130Cas localization and Rac1 activity during cell migration. J Cell Biol 2005; 168: 813–824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sun G, Irvine KD . Ajuba family proteins link JNK to Hippo signaling. Sci Signal 2013; 6: ra81.

    Article  PubMed  Google Scholar 

  8. Hou Z, Peng H, Ayyanathan K, Yan KP, Langer EM, Longmore GD et al. The LIM protein AJUBA recruits protein arginine methyltransferase 5 to mediate SNAIL-dependent transcriptional repression. Mol Cell Biol 2008; 28: 3198–3207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Srichai MB, Konieczkowski M, Padiyar A, Konieczkowski DJ, Mukherjee A, Hayden PS et al. A WT1 co-regulator controls podocyte phenotype by shuttling between adhesion structures and nucleus. J Biol Chem 2004; 279: 14398–14408.

    Article  CAS  PubMed  Google Scholar 

  10. Ayyanathan K, Peng H, Hou Z, Fredericks WJ, Goyal RK, Langer EM et al. The Ajuba LIM domain protein is a corepressor for SNAG domain mediated repression and participates in nucleocytoplasmic shuttling. Cancer Res 2007; 67: 9097–9106.

    Article  CAS  PubMed  Google Scholar 

  11. Darnell Jr JE, Kerr IM, Stark GR . Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994; 264: 1415–1421.

    Article  CAS  PubMed  Google Scholar 

  12. Mertens C, Darnell JE Jr . SnapShot: JAK-STAT signaling. Cell 2007; 131: 612.

    Article  CAS  PubMed  Google Scholar 

  13. Kotenko SV, Pestka S . Jak-Stat signal transduction pathway through the eyes of cytokine class II receptor complexes. Oncogene 2000; 19: 2557–2565.

    Article  CAS  PubMed  Google Scholar 

  14. Blouin CM, Lamaze C . Interferon gamma receptor: the beginning of the journey. Front Immunol 2013; 4: 267.

    Article  PubMed  PubMed Central  Google Scholar 

  15. O’Connell D, Bouazza B, Kokalari B, Amrani Y, Khatib A, Ganther JD et al. IFN-gamma-induced JAK/STAT, but not NF-kappaB, signaling pathway is insensitive to glucocorticoid in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2015; 309: L348–L359.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Reich NC . A death-promoting role for ISG54/IFIT2. J Interferon Cytokine Res: The Official Journal of the International Society for Interferon and Cytokine Research 2013; 33: 199–205.

    Article  CAS  Google Scholar 

  17. Stawowczyk M, Van Scoy S, Kumar KP, Reich NC . The interferon stimulated gene 54 promotes apoptosis. J Biol Chem 2011; 286: 7257–7266.

    Article  CAS  PubMed  Google Scholar 

  18. Zhou X, Michal JJ, Zhang L, Ding B, Lunney JK, Liu B et al. Interferon induced IFIT family genes in host antiviral defense. Int J Biol Sci 2013; 9: 200–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tiwari M, Prasad S, Tripathi A, Pandey AN, Ali I, Singh AK et al. Apoptosis in mammalian oocytes: a review. Apoptosis: An International Journal on Programmed Cell Death 2015; 20: 1019–1025.

    Article  CAS  Google Scholar 

  20. Quispel WT, Stegehuis-Kamp JA, Santos SJ, van Wengen A, Dompeling E, Egeler RM et al. Intact IFN-gammaR1 expression and function distinguishes Langerhans cell histiocytosis from mendelian susceptibility to mycobacterial disease. J Clin Immunol 2014; 34: 84–93.

    Article  CAS  PubMed  Google Scholar 

  21. Krebs DL, Hilton DJ . SOCS: physiological suppressors of cytokine signaling. J Cell Sci 2000; 113 (Pt 16): 2813–2819.

    CAS  PubMed  Google Scholar 

  22. Baetz A, Frey M, Heeg K, Dalpke AH . Suppressor of cytokine signaling (SOCS) proteins indirectly regulate toll-like receptor signaling in innate immune cells. J Biol Chem 2004; 279: 54708–54715.

    Article  CAS  PubMed  Google Scholar 

  23. Qin H, Yeh WI, De Sarno P, Holdbrooks AT, Liu Y, Muldowney MT et al. Signal transducer and activator of transcription-3/suppressor of cytokine signaling-3 (STAT3/SOCS3) axis in myeloid cells regulates neuroinflammation. Proc Natl Acad Sci USA 2012; 109: 5004–5009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vlotides G, Sorensen AS, Kopp F, Zitzmann K, Cengic N, Brand S et al. SOCS-1 and SOCS-3 inhibit IFN-alpha-induced expression of the antiviral proteins 2,5-OAS and MxA. Biochem Biophys Res Commun 2004; 320: 1007–1014.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang JG, Farley A, Nicholson SE, Willson TA, Zugaro LM, Simpson RJ et al. The conserved SOCS box motif in suppressors of cytokine signaling binds to elongins B and C and may couple bound proteins to proteasomal degradation. Proc Natl Acad Sci USA 1999; 96: 2071–2076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bluyssen HA, Vlietstra RJ, Faber PW, Smit EM, Hagemeijer A, Trapman J . Structure, chromosome localization, and regulation of expression of the interferon-regulated mouse Ifi54/Ifi56 gene family. Genomics 1994; 24: 137–148.

    Article  CAS  PubMed  Google Scholar 

  27. Du LY, Cui YL, Chen EQ, Cheng X, Liu L, Tang H . Correlation between the suppressor of cytokine signaling-1 and 3 and hepatitis B virus: possible roles in the resistance to interferon treatment. Virol J 2014; 11: 51.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gongora C, Mechti N . Interferon signaling pathways. Bulletin du cancer 1999; 86: 911–919.

    CAS  PubMed  Google Scholar 

  29. Stark GR, Darnell JE Jr . The JAK-STAT pathway at twenty. Immunity 2012; 36: 503–514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Reich NC . STATs get their move on. Jak-Stat 2013; 2: e27080.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Decker T, Kovarik P, Meinke A . GAS elements: a few nucleotides with a major impact on cytokine-induced gene expression. J Interferon Cytokine Res: The Official Journal of the International Society for Interferon and Cytokine Research 1997; 17: 121–134.

    Article  CAS  Google Scholar 

  32. Li Q, Peng H, Fan H, Zou X, Liu Q, Zhang Y et al. The LIM protein Ajuba promotes adipogenesis by enhancing PPARgamma and p300/CBP interaction. Cell Death Differe 2016; 23: 158–168.

    Article  CAS  Google Scholar 

  33. Chen J, Xu H, Zou X, Wang J, Zhu Y, Chen H et al. Snail recruits Ring1B to mediate transcriptional repression and cell migration in pancreatic cancer cells. Cancer Res 2014; 74: 4353–4363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jia H, Cong Q, Chua JF, Liu H, Xia X, Zhang X et al. p57Kip2 is an unrecognized DNA damage response effector molecule that functions in tumor suppression and chemoresistance. Oncogene 2015; 34: 3568–3581.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Frank J Rauscher III for his critical reading and insightful suggestions, and Xinyu Hou for her technical support. This work was supported by the Ministry of Sciences & Technology of China (2013CB 910900); the National Science Foundation of China (grant Nos. 81372309, 81402376, 31671415, 31601114, 81402177); Shanghai Committee of Science and Technology (13JC1401302, 15410724200); Shanghai Municipal Commission of Health and Family Planning (No. 201440426); and Science and Technology Commission of Changning District of Shanghai No. CNKW2014F01); and the China Postdoctoral Science Foundation (No. 2015M570369).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B Wang, H Peng or Z Hou.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, H., Song, L., Cong, Q. et al. The LIM protein AJUBA promotes colorectal cancer cell survival through suppression of JAK1/STAT1/IFIT2 network. Oncogene 36, 2655–2666 (2017). https://doi.org/10.1038/onc.2016.418

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.418

This article is cited by

Search

Quick links