[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myoferlin regulates cellular lipid metabolism and promotes metastases in triple-negative breast cancer

Abstract

Myoferlin is a multiple C2-domain-containing protein that regulates membrane repair, tyrosine kinase receptor function and endocytosis in myoblasts and endothelial cells. Recently it has been reported as overexpressed in several cancers and shown to contribute to proliferation, migration and invasion of cancer cells. We have previously demonstrated that myoferlin regulates epidermal growth factor receptor activity in breast cancer. In the current study, we report a consistent overexpression of myoferlin in triple-negative breast cancer cells (TNBC) over cells originating from other breast cancer subtypes. Using a combination of proteomics, metabolomics and electron microscopy, we demonstrate that myoferlin depletion results in marked alteration of endosomal system and metabolism. Mechanistically, myoferlin depletion caused impaired vesicle traffic that led to a misbalance of saturated/unsaturated fatty acids. This provoked mitochondrial dysfunction in TNBC cells. As a consequence of the major metabolic stress, TNBC cells rapidly triggered AMP activated protein kinase-mediated metabolic reprogramming to glycolysis. This reduced their ability to balance between oxidative phosphorylation and glycolysis, rendering TNBC cells metabolically inflexible, and more sensitive to metabolic drug targeting in vitro. In line with this, our in vivo findings demonstrated a significantly reduced capacity of myoferlin-deficient TNBC cells to metastasise to lungs. The significance of this observation was further supported by clinical data, showing that TNBC patients whose tumors overexpress myoferlin have worst distant metastasis-free and overall survivals. This novel insight into myoferlin function establishes an important link between vesicle traffic, cancer metabolism and progression, offering new diagnostic and therapeutic concepts to develop treatments for TNBC patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Liedtke C, Mazouni C, Hess KR, Andre F, Tordai A, Mejia JA et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol 2008; 26: 1275–1281.

    Article  PubMed  Google Scholar 

  2. Mayer IA, Abramson VG, Lehmann BD, Pietenpol JA . New strategies for triple-negative breast cancer—deciphering the heterogeneity. Clin Cancer Res 2014; 20: 782–790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. O'Toole SA, Beith JM, Millar EK, West R, McLean A, Cazet A et al. Therapeutic targets in triple negative breast cancer. J Clin Pathol 2013; 66: 530–542.

    Article  CAS  PubMed  Google Scholar 

  4. Vander Heiden MG . Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov 2011; 10: 671–684.

    Article  CAS  PubMed  Google Scholar 

  5. Warburg O . On the origin of cancer cells. Science 1956; 123: 309–314.

    Article  CAS  PubMed  Google Scholar 

  6. Jose C, Bellance N, Rossignol R . Choosing between glycolysis and oxidative phosphorylation: a tumor's dilemma? Biochim Biophys Acta 2011; 1807: 552–561.

    Article  CAS  PubMed  Google Scholar 

  7. Zheng J . Energy metabolism of cancer: glycolysis versus oxidative phosphorylation (Review). Oncol Lett 2012; 4: 1151–1157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Griguer CE, Oliva CR, Gillespie GY . Glucose metabolism heterogeneity in human and mouse malignant glioma cell lines. J Neurooncol 2005; 74: 123–133.

    Article  CAS  PubMed  Google Scholar 

  9. Miccheli A, Tomassini A, Puccetti C, Valerio M, Peluso G, Tuccillo F et al. Metabolic profiling by 13C-NMR spectroscopy: [1,2-13C2]glucose reveals a heterogeneous metabolism in human leukemia T cells. Biochimie 2006; 88: 437–448.

    Article  CAS  PubMed  Google Scholar 

  10. Chen JL, Lucas JE, Schroeder T, Mori S, Wu J, Nevins J et al. The genomic analysis of lactic acidosis and acidosis response in human cancers. PLoS Genet 2008; 4: e1000293.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Haq R, Shoag J, Andreu-Perez P, Yokoyama S, Edelman H, Rowe GC et al. Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF. Cancer Cell 2013; 23: 302–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sorkin A, von Zastrow M . Endocytosis and signalling: intertwining molecular networks. Nat Rev Mol Cell Biol 2009; 10: 609–622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Goldstein JL, Brown MS . The LDL receptor. Arterioscler Thromb Vasc Biol 2009; 29: 431–438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Aisen P, Enns C, Wessling-Resnick M . Chemistry and biology of eukaryotic iron metabolism. Int J Biochem Cell Biol 2001; 33: 940–959.

    Article  CAS  PubMed  Google Scholar 

  15. Jovic M, Sharma M, Rahajeng J, Caplan S . The early endosome: a busy sorting station for proteins at the crossroads. Histol Histopathol 2010; 25: 99–112.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Antonescu CN, McGraw TE, Klip A . Reciprocal regulation of endocytosis and metabolism. Cold Spring Harb Perspect Biol 2014; 6: a016964.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rambold AS, Cohen S, Lippincott-Schwartz J . Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev Cell 2015; 32: 678–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Unger RH, Clark GO, Scherer PE, Orci L . Lipid homeostasis, lipotoxicity and the metabolic syndrome. Biochim Biophys Acta 2010; 1801: 209–214.

    Article  CAS  PubMed  Google Scholar 

  19. Li R, Ackerman WEt, Mihai C, Volakis LI, Ghadiali S, Kniss DA . Myoferlin depletion in breast cancer cells promotes mesenchymal to epithelial shape change and stalls invasion. PLoS One 2012; 7: e39766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Turtoi A, Blomme A, Bellahcene A, Gilles C, Hennequiere V, Peixoto P et al. Myoferlin is a key regulator of EGFR activity in breast cancer. Cancer Res 2013; 73: 5438–5448.

    Article  CAS  PubMed  Google Scholar 

  21. Volakis LI, Li R, Ackerman WEt, Mihai C, Bechel M, Summerfield TL et al. Loss of myoferlin redirects breast cancer cell motility towards collective migration. PLoS One 2014; 9: e86110.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sachen KL, Strohman MJ, Singletary J, Alizadeh AA, Kattah NH, Lossos C et al. Self-antigen recognition by follicular lymphoma B-cell receptors. Blood 2012; 120: 4182–4190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Turtoi A, Musmeci D, Wang Y, Dumont B, Somja J, Bevilacqua G et al. Identification of novel accessible proteins bearing diagnostic and therapeutic potential in human pancreatic ductal adenocarcinoma. J Proteome Res 2011; 10: 4302–4313.

    Article  CAS  PubMed  Google Scholar 

  24. Wang WS, Liu XH, Liu LX, Lou WH, Jin DY, Yang PY et al. iTRAQ-based quantitative proteomics reveals myoferlin as a novel prognostic predictor in pancreatic adenocarcinoma. J Proteomics 2013; 91: 453–465.

    Article  CAS  PubMed  Google Scholar 

  25. Fahmy K, Gonzalez A, Arafa M, Peixoto P, Bellahcene A, Turtoi A et al. Myoferlin plays a key role in VEGFA secretion and impacts tumor-associated angiogenesis in human pancreas cancer. Int J Cancer 2016; 138: 652–663.

    Article  CAS  PubMed  Google Scholar 

  26. Leung C, Yu C, Lin MI, Tognon C, Bernatchez P . Expression of myoferlin in human and murine carcinoma tumors: role in membrane repair, cell proliferation, and tumorigenesis. Am J Pathol 2013; 182: 1900–1909.

    Article  CAS  PubMed  Google Scholar 

  27. Doherty KR, Demonbreun AR, Wallace GQ, Cave A, Posey AD, Heretis K et al. The endocytic recycling protein EHD2 interacts with myoferlin to regulate myoblast fusion. J Biol Chem 2008; 283: 20252–20260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bernatchez PN, Sharma A, Kodaman P, Sessa WC . Myoferlin is critical for endocytosis in endothelial cells. Am J Physiol Cell Physiol 2009; 297: C484–C492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bernatchez PN, Acevedo L, Fernandez-Hernando C, Murata T, Chalouni C, Kim J et al. Myoferlin regulates vascular endothelial growth factor receptor-2 stability and function. J Biol Chem 2007; 282: 30745–30753.

    Article  CAS  PubMed  Google Scholar 

  30. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 2006; 10: 515–527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kiss AL . Caveolae and the regulation of endocytosis. Adv Exp Med Biol 2012; 729: 14–28.

    Article  CAS  PubMed  Google Scholar 

  32. Penzo D, Tagliapietra C, Colonna R, Petronilli V, Bernardi P . Effects of fatty acids on mitochondria: implications for cell death. Biochim Biophys Acta 2002; 1555: 160–165.

    Article  CAS  PubMed  Google Scholar 

  33. Doherty KR, Cave A, Davis DB, Delmonte AJ, Posey A, Earley JU et al. Normal myoblast fusion requires myoferlin. Development 2005; 132: 5565–5575.

    Article  CAS  PubMed  Google Scholar 

  34. Pilch PF, Liu L . Fat caves: caveolae, lipid trafficking and lipid metabolism in adipocytes. Trends Endocrinol Metab 2011; 22: 318–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hullin-Matsuda F, Taguchi T, Greimel P, Kobayashi T . Lipid compartmentalization in the endosome system. Semin Cell Dev Biol 2014; 31: 48–56.

    Article  CAS  PubMed  Google Scholar 

  36. Pavlova NN, Thompson CB . The emerging hallmarks of cancer metabolism. Cell Metab 2016; 23: 27–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. LeBleu VS, O'Connell JT, Gonzalez Herrera KN, Wikman H, Pantel K, Haigis MC et al. PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat Cell Biol 2014; 16: 992–1003 1-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Porporato PE, Payen VL, Perez-Escuredo J, De Saedeleer CJ, Danhier P, Copetti T et al. A mitochondrial switch promotes tumor metastasis. Cell Rep 2014; 8: 754–766.

    Article  CAS  PubMed  Google Scholar 

  39. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB . The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 2008; 7: 11–20.

    Article  CAS  PubMed  Google Scholar 

  40. Ward PS, Thompson CB . Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 2012; 21: 297–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG . Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 2010; 8: e1000412.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Youm YH, Nguyen KY, Grant RW, Goldberg EL, Bodogai M, Kim D et al. The ketone metabolite beta-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat Med 2015; 21: 263–269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Matheus N, Hansen S, Rozet E, Peixoto P, Maquoi E, Lambert V et al. An easy, convenient cell and tissue extraction protocol for nuclear magnetic resonance metabolomics. Phytochem Anal 2014; 25: 342–349.

    Article  CAS  PubMed  Google Scholar 

  44. Gyorffy B, Surowiak P, Budczies J, Lanczky A . Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer. PLoS One 2013; 8: e82241.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the experimental support of Dr Chantal Humblet and Mrs Alice Marquet (GIGA-histology platform, ULg), Dr Sandra Ormenese (GIGA-imaging platform, ULg), Mr Vincent Hennequière and Mrs Naima Maloujahmoum (Metastasis Research Laboratory) for experimental support. We are also thankful to the institutional Biobank of the University Hospital Liege for providing patient material. Mr Mathieu Roch (CMMI) is thanked for his help in tumor volume measurements on MR images. We are grateful to Mrs Marie-Aline Laute and Mr Nicolas Passon, the Cyclotron team (Erasme Hospital, Brussels, Belgium) and Dr. Bolag Altan (Gunma University) for technical assistance. The results shown in this work are in part based upon data generated by the TCGA Research Network: http://cancergenome.nih.gov/. This work was supported with grants from the University of Liège (Concerted Research Action Program (IDEA project)), National Fund for Scientific Research (FNRS), Fonds Erasme, Convention de Recherche Association Vinçotte Nuclear—AVN and Gunma University (GIAR Research Program for Omics-Based Medical Science). Andrei Turtoi and Arnaud Blomme are post-doctoral research fellows (FNRS/Televie), Akeila Bellahcène and Pascal de Tullio are senior research associates (FNRS). The Center for Microscopy and Molecular Imaging (CMMI) as well as Gilles Doumont are supported by the European Regional Development Fund and Wallonia (FEDER). No funding bodies had any role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Turtoi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blomme, A., Costanza, B., de Tullio, P. et al. Myoferlin regulates cellular lipid metabolism and promotes metastases in triple-negative breast cancer. Oncogene 36, 2116–2130 (2017). https://doi.org/10.1038/onc.2016.369

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.369

Search

Quick links