[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Viral hepatocarcinogenesis

Abstract

Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third leading cause of cancer death worldwide. Despite recent advances in the diagnosis and treatment of HCC, its prognosis remains dismal. Infection with hepatitis B virus (HBV) and hepatitis C virus (HCV) are the major risk factors for HCC. Although both are hepatotropic viral infections, there are important differences between the oncogenic mechanisms of these two viruses. In addition to the oncogenic potential of its viral proteins, HBV, as a DNA virus, can integrate into host DNA and directly transform hepatocytes. In contrast, HCV, an RNA virus, is unable to integrate into the host genome, and viral protein expression has a more critical function in hepatocarcinogenesis. Both HBV and HCV proteins have been implicated in disrupting cellular signal transduction pathways that lead to unchecked cell growth. Most HCC develops in the cirrhotic liver, but the linkage between cirrhosis and HCC is likely multifactorial. In this review, we summarize current knowledge regarding the pathogenetic mechanisms of viral HCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Adinolfi LE, Gambardella M, Andreana A, Tripodi MF, Utili R, Ruggiero G . (2001). Steatosis accelerates the progression of liver damage of chronic hepatitis C patients and correlates with specific HCV genotype and visceral obesity. Hepatology 33: 1358–1364.

    CAS  Google Scholar 

  • Alisi A, Giambartolomei S, Cupelli F, Merlo P, Fontemaggi G, Spaziani A et al. (2003). Physical and functional interaction between HCV core protein and the different p73 isoforms. Oncogene 22: 2573–2580.

    CAS  Google Scholar 

  • Anzola M . (2004). Hepatocellular carcinoma: role of hepatitis B and hepaititis C viruses proteins in hepatocarcinogenesis. J Viral Hepat 11: 383–393.

    CAS  Google Scholar 

  • Aoki H, Hayashi J, Moriyama M, Arkawa Y, Hino O . (2000). Hepatitis C virus core protein interacts with 14-3-3 protein and activates the kinase Raf-1. J Virol 74: 1736–1741.

    CAS  Google Scholar 

  • Aravalli RN, Steer CJ, Cressman ENK . (2008). Molecular mechanisms of hepatocellular carcinoma. Hepatology 48: 2047–2063.

    CAS  Google Scholar 

  • Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW, Long JM et al. (2005). IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med 11: 191–198.

    CAS  Google Scholar 

  • Arora P, Kim EO, Jung JK, Jang KL . (2008). Hepatitis C virus core protein downregulates E-cadherin expression via activation of DNA methyltransferase 1 and 3b. Cancer Lett 261: 244–252.

    CAS  Google Scholar 

  • Baptista M, Kramvis A, Kew MC . (1999). High prevalence of 1762(T) 1764(A) mutations in the basic core promoter of hepatitis B virus isolated from black Africans with hepatocellular carcinoma compared with asymptomatic carriers. Hepatology 29: 946–953.

    CAS  Google Scholar 

  • Barth H, Robinet E, Liang TJ, Baumert TF . (2008). Mouse models for the study of HCV infection and virus-host interactions. J Hepatol 49: 134–142.

    CAS  Google Scholar 

  • Bassett SE, Di Bisceglie AM, Bacon BR, Sharp RM, Govin darajan S, Hubbard GB et al. (1999). Effects of iron loading on pathogenicity in hepatitis C virus-infected chimpanzees. Hepatology 29: 1884–1892.

    CAS  Google Scholar 

  • Battaglia S, Benzoubir N, Nobilet S, Charneau P, Samuel D, Zignego AL et al. (2009). Liver cancer-derived hepatitis C virus core proteins shift TGF-beta responses from tumor suppression to epithelial-mesenchymal transition. PLoS ONE 42: e4355.

    Google Scholar 

  • Benali-Furet NL, Chami M, Houel L, De Giorgi F, Vernejoul F, Lagorce D et al. (2005). Hepatitis C virus core triggers apoptosis in liver cells by inducing ER stress and ER calcium depletion. Oncogene 24: 4921–4933.

    CAS  Google Scholar 

  • Benard J, Douc-Rasy S, Ahomadegbe JC . (2003). TP 53 family members and human cancers. Hum Mutat 21: 182–191.

    CAS  Google Scholar 

  • Benn J, Schneider RJ . (1994). Hepatitis B virus HBx protein activates Ras-GTP complex formation and establishes a Ras, Raf, MAP kinase signaling cascade. Proc Natl Acad Sci USA 91: 10350–10354.

    CAS  Google Scholar 

  • Bonte D, François C, Castelain S, Wychowski C, Dubuisson J, Meurs EF et al. (2004). Positive effect of the hepatitis C virus nonstructural 5A protein on viral multiplication. Arch Virol 149: 1353–1371.

    CAS  Google Scholar 

  • Bouchard MJ, Wang LH, Schneider RJ . (2001). Calcium signaling by HBx protein in hepatitis B virus DNA replication. Science 294: 2376–2378.

    CAS  Google Scholar 

  • Branda M, Wands JR . (2006). Signal transduction cascades and hepatitis B and C related hepatocellular carcinoma. Hepatology 43: 891–902.

    CAS  Google Scholar 

  • Brechot C, Pourcel C, Louise A, Rain B, Tiollais P . (1980). Presence of integrated hepatitis B virus DNA sequences in cellular DNA of human hepatocellular carcinoma. Nature 286: 533–535.

    CAS  Google Scholar 

  • Bureau C, Bernad J, Chaouche N, Orfila C, Beraud M, Gonindard C et al. (2001). Nonstructural 3 protein of hepatitis C virus triggers an oxidative burst in human monocytes via activation of NADPH oxidase. J Biol Chem 276: 23077–23083.

    CAS  Google Scholar 

  • Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J et al. (2005). Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med 11: 183–190.

    CAS  Google Scholar 

  • Caldwell S, Park SH . (2009). The epidemiology of hepatocellular cancer: from the perspectives of public health problem to tumor biology. J Gastroenterol 44 (Suppl XIX): 96–101.

    Google Scholar 

  • Campbell JS, Hughes SD, Gilbertson DG, Palmer TE, Holdren MS, Haran AC et al. (2005). Platelet-derived growth factor C induces liver fibrosis, steatosis, and hepatocellular carcinoma. Proc Natl Acad Sci USA 102: 3389–3394.

    CAS  Google Scholar 

  • Cassiman D, Denef C, Desmet VJ, Roskams T . (2001). Human and rat hepatic stellate cells express neurotrophins and neurotrophin receptors. Hepatology 33: 148–158.

    CAS  Google Scholar 

  • Chami M, Oulés B, Paterlini-Bréchot P . (2006). Cytobiological consequences of calcium-signaling alterations induced by human viral proteins. Biochim Biophys Acta 1763: 1344–1362.

    CAS  Google Scholar 

  • Chan HL, Hui AY, Wong ML, Tse AM, Hung LC, Wong VW et al. (2004). Genotype C hepatitis B virus infection is associated with increased risk of hepatocellular carcinoma. Gut 53: 1494–1498.

    Google Scholar 

  • Chan HL, Tse CH, Mo F, Koh J, Wong VW, Wong GL et al. (2008). High viral load and hepatitis B virus subgenotype ce are associated with increased risk of hepatocellular carcinoma. J Clin Oncol 26: 177–182.

    CAS  Google Scholar 

  • Chen CH, Wang MH, Wang JH, Hung CH, Hu TH, Lee SC et al. (2007). Aflatoxin exposure and hepatitis C virus in advanced liver disease in a hepatitis C virus endemic area in Taiwan. Am J Trop Med Hyg 77: 747–752.

    CAS  Google Scholar 

  • Chen CJ, Yang HI, Su J, Jen CL, You SL, Lu SN, et al., REVEAL-HBV Study Group. (2006). Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. JAMA 295: 65–73.

    CAS  Google Scholar 

  • Chen CJ, Yang HI, Iloeje UH, REVEAL-HBV Study Group. (2009). Hepatitis B Virus DNA levels and outcomes in chronic Hepatitis B. Hepatology 49: S72–S84.

    CAS  Google Scholar 

  • Chen J, Siddiqui A . (2007). Hepatitis B virus X protein stimulates the mitochondrial translocation of Raf-1 via oxidative stress. J Virol 81: 6757–6760.

    CAS  Google Scholar 

  • Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS et al. (2009). Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol 10: 25–34.

    CAS  Google Scholar 

  • Chisari FV . (2005). Unscrambling hepatitis C virus-host interactions. Nature 436: 930–932.

    CAS  Google Scholar 

  • Chisari FV, Klopchin K, Moriyama T, Pasquinelli C, Dunsford HA, Sell S et al. (1989). Molecular pathogenesis of hepatocellular carcinoma in hepatitis B virus transgenic mice. Cell 59: 1145–1156.

    CAS  Google Scholar 

  • Chiu CM, Yeh SH, Chen PJ et al. (2007). Hepatitis B virus X protein enhances androgen receptor-responsive gene expression depending on androgen level. Proc Natl Acad Sci USA 104: 2571–2578.

    CAS  Google Scholar 

  • Cho J, Baek W, Yang S, Chang J, Sung YC, Suh M . (2001). HCV core protein modulates Rb pathway through pRb down-regulation and E2F-1 up-regulation. Biochim Biophys Acta 1538: 59–66.

    CAS  Google Scholar 

  • Choi J, Ou JHJ . (2006). Mechanisms of liver injury III oxidative stress in the pathogenesis of hepatitis C virus. Am J Physiol Gastrointest Liver Physiol 290: G847–G851.

    CAS  Google Scholar 

  • Choi SH, Hwang SB . (2006). Modulation of the transforming growth factor-beta signal transduction pathway by hepatitis C virus nonstructural 5A protein. J Biol Chem 281: 7468–7478.

    CAS  Google Scholar 

  • Chou YC, Yu MW, Wu CF, Yang SY, Lin CL, Liu CJ et al. (2008). Temporal relationship between hepatitis B virus enhancer II/basal core promoter sequence variation and risk of hepatocellular carcinoma. Gut 57: 91–97.

    CAS  Google Scholar 

  • Chu CJ, Hussain M, Lok ASF . (2002). Hepatitis B virus genotype is associated with earlier HBeAg seroconversion compared with hepatitis B virus genotype C. Gastroenterology 122: 1756–1762.

    CAS  Google Scholar 

  • Chung YL, Sheu ML, Yen SH . (2003). Hepatitis C virus NS5A as a potential viral Bcl-2 homologue interacts with Bax and inhibits apoptosis in hepatocellular carcinoma. Int J Cancer 107: 65–73.

    CAS  Google Scholar 

  • Crotta S, Stilla A, Wack A, D'Andrea A, Nuti S, D'Oro U et al. (2002). Inhibition of natural killer cells through engagement of CD81 by the major hepatitis C virus envelope protein. J Exp Med 195: 35–41.

    CAS  Google Scholar 

  • Czaja MJ . (2007). Cell signaling in oxidative stress-induced liver injury. Semin Liver dis 27: 378–389.

    CAS  Google Scholar 

  • Dandri M, Burda MR, Burkle A, Zuckerman DM, Will H, Rogler CE et al. (2002). Increase in de novo HBV DNA integrations in response to oxidative DNA damage or inhibition of poly(ADPribosyl)ation. Hepatology 35: 217–223.

    CAS  Google Scholar 

  • de Lucas S, Bartolome J, Amaro MJ, Carreno V . (2003). Hepatitis C virus core protein transactivates the inducible nitric oxide synthase promoter via NF-kappaB activation. Antiviral Res 60: 117–124.

    CAS  Google Scholar 

  • Deng L, Nagano-Fujii M, Tanaka M, Nomura-Takigawa Y, Ikeda M, Kato N et al. (2006). NS3 protein of hepatitis C virus associates with the tumour suppressor p53 and inhibits its function in an NS3 sequence-dependent manner. J Gen Virol 87: 1703–1713.

    CAS  Google Scholar 

  • Diao J, Khine AA, Sarangi F, Hsu E, Iorio C, Tibbles LA et al. (2001). X protein of hepatitis B virus inhibits Fas-mediated apoptosis and is associated with up-regulation of the SAPK/JNK pathway. J Biol Chem 16: 8328–8340.

    Google Scholar 

  • Ding Q, Xia W, Liu JC, Yang JY, Lee DF, Xia J et al. (2005). Erk associates with and primes GSK-3beta for its inactivation resulting in upregulation of beta-catenin. Mol Cell 19: 159–170.

    CAS  Google Scholar 

  • Donato F, Boffetta P, Puoti M . (1998). A meta-analysis of epidemiological studies on the combined effect of hepatitis B and C virus infections in causing hepatocellular carcinoma. Int J Cancer 75: 347–354.

    CAS  Google Scholar 

  • Donato F, Tagger A, Gelatti U, Parrinello G, Boffetta P, Albertini A et al. (2002). Alcohol and hepatocellular carcinoma: the effect of lifetime intake and hepatitis virus infections in men and women. Am J Epidemiol 155: 323–331.

    CAS  Google Scholar 

  • Ebara M, Fukuda H, Hatano R, Yoshikawa M, Sugiura N, Saisho H et al. (2003). Metal contents in the liver of patients with chronic liver disease caused by hepatitis C virus. Reference to hepatocellular carcinoma. Oncology 65: 323–330.

    CAS  Google Scholar 

  • El-Serag HB . (2002). Hepatocellular carcinoma and hepatitis C in the United States. Hepatology 36: S74–S83.

    Google Scholar 

  • El-Serag HB, Rudolph KL . (2007). Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132: 2557–2576.

    CAS  Google Scholar 

  • Erhardt A, Hassan M, Heintges T, Haussinger D . (2002). Hepatitis C virus core protein induces cell proliferation and activates ERK, JNK, and p38 MAP kinases together with the MAP kinase phosphatase MKP-1 in a HepG2 Tet-Off cell line. Virology 292: 272–284.

    CAS  Google Scholar 

  • Fang ZL, Sabin CA, Dong BQ, Ge LY, Wei SC, Chen QY et al. (2008). HBV A1762T, G1764A mutations are a valuable biomarker for identifying a subset of male HBsAg carriers at extremely high risk of hepatocellular carcinoma: a prospective study. Am J Gastroenterol 103: 2254–2262.

    CAS  Google Scholar 

  • Fattovich G . (2003). Natural history and prognosis of hepatitis B. Sem Liver Diseas 23: 47–58.

    Google Scholar 

  • Feitelson MA, Lee J . (2007). Hepatitis B virus integration, fragile sites, and hepatocarcinogenesis. Cancer Lett 252: 157–170.

    CAS  Google Scholar 

  • Feitelson MA, Reis HM, Lale Tufan N, Sun B, Pan J, Lian Z . (2009). Putative roles of hepatitis B x antigen in the pathogenesis of chronic liver disease. Cancer Lett 286: 69–79.

    CAS  Google Scholar 

  • Friedman SL . (2008). Mechanism of hepatic fibrogenesis. Gastroenterology 134: 1655–1669.

    CAS  Google Scholar 

  • Friedman SL, Arthur MJ . (1989). Activation of cultured rat hepatic lipocytes by Kupffer cell conditioned medium. Direct enhancement of matrix synthesis and stimulation of cell proliferation via induction of platelet-derived growth factor receptors. J Clin Invest 84: 1780–1785.

    CAS  Google Scholar 

  • Fujie H, Moriya K, Shintani Y, Yotsuyanagi H . (2001). Hepatitis B virus genotypes and hepatocellular carcinoma in Japan. Gastroenterology 120: 1564–1565.

    CAS  Google Scholar 

  • Fujio K, Evarts RP, Hu Z, Marsden ER, Thorgeirsson SS . (1994). Expression of stem cell factor and its receptor, c-kit, during liver regeneration from putative stem cells in adult rat. Lab Invest 70: 511–516.

    CAS  Google Scholar 

  • Fukutomi T, Zhou Y, Kawai S, Eguchi H, Wands JR, Li J . (2005). Hepatitis C virus core protein stimulates hepatocyte growth: correlation with upregulation of wnt-1 expression. Hepatology 41: 1096–1105.

    CAS  Google Scholar 

  • Furutani T, Hino K, Okuda M, Gondo T, Nishina S, Kitase A et al. (2006). Hepatic iron overload induces hepatocellular carcinoma in transgenic mice expressing the hepatitis C virus polyprotein. Gastroenterology 130: 2087–2098.

    CAS  Google Scholar 

  • Gaudio E, Carpino G, Cardinale V, Franchitto A, Onori P, Alvaro D . (2009). New insights into liver stem cells. Dig Liver Dis 41: 455–462.

    CAS  Google Scholar 

  • Ghosh AK, Majumder M, Steele R, Meyer K, Ray R, Ray RB . (2000). Hepatitis C virus NS5A protein protects against TNFalpha mediated apoptotic cell death. Virus Res 67: 173–178.

    CAS  Google Scholar 

  • Gong G, Waris G, Tanveer R, Siddiqui A . (2001). Human hepatitis C virus NS5A protein alters intracellular calcium levels, induces oxidative stress, and activates STAT-3 and NF-kappa B. Proc Natl Acad Sci USA 98: 9599–9604.

    CAS  Google Scholar 

  • Gu X, Qi P, Zhou F, Ji Q, Wang H, Dou T et al. (2009). An intronic polymorphism in the corticotropin-releasing hormone receptor 2 gene increases susceptibility to HBV-related hepatocellular carcinoma in Chinese population. Hum Genet 127: 75–81.

    Google Scholar 

  • Guerrero RB, Roberts LR . (2005). The role of hepatitis B virus integrations in the pathogenesis of human hepatocellular carcinoma. J Hepatol 42: 760–777.

    Google Scholar 

  • Hassan M, Ghozlan H, Abdel-Kader O . (2005). Activation of c-Jun NH2-terminal kinase (JNK) signalling pathway is essential for the stimulation of hepatitis C virus (HCV) nonstructural protein 3 (NS3)-mediated cell growth. Virology 333: 324–336.

    CAS  Google Scholar 

  • Hassan M, Selimovic D, Ghozlan H, Abdel-Kader O . (2007). Induction of high-molecular-weight (HMW) tumor necrosis factor(TNF) alpha by hepatitis C virus (HCV) non-structural protein 3 (NS3) in liver cells is AP-1 and NF-kappaB-dependent activation. Cell Signal 19: 301–311.

    CAS  Google Scholar 

  • Hassan M, Selimovic D, Ghozlan H, Abdel-kader O . (2009). Hepatitis C virus core protein triggers hepatic angiogenesis by a mechanism including multiple pathways. Hepatology 49: 1469–1482.

    CAS  Google Scholar 

  • Hayashi J, Aoki H, Kajino K, Moriyama M, Arakawa Y, Hino O . (2000). Hepatitis C virus core protein activates the MAPK/ERK cascade synergistically with tumor promoter TPA, but not with epidermal growth factor or transforming growth factor alpha. Hepatology 32: 958–961.

    CAS  Google Scholar 

  • He Y, Nakao H, Tan SL, Polyak SJ, Neddermann P, Vijaysri S et al. (2002). Subversion of cell signaling pathways by hepatitis C virus nonstructural 5A protein via interaction with Grb2 and P85 phosphatidylinositol 3-kinase. J Virol 76: 9207–9217.

    CAS  Google Scholar 

  • Hildt E, Munz B, Saher G, Reifenberg K, Hofschneider PH . (2002). The PreS2 activator MHBs(t) of hepatitis B virus activates c-raf-1/Erk2 signaling in transgenic mice. EMBO J 21: 525–535.

    CAS  Google Scholar 

  • Hirankarn N, Kimkong I, Kummee P, Tangkijvanich P, Poovorawan Y . (2006). Interleukin-1beta gene polymorphism associated with hepatocellular carcinoma in hepatitis B virus infection. World J Gastroenterol 12: 776–779.

    CAS  Google Scholar 

  • Honda M, Yamashita T, Ueda T, Takatori H, Nishino R, Kaneko S . (2006). Different signaling pathways in the livers of patients with chronic hepatitis B or chronic hepatitis C. Hepatology 44: 1122–1138.

    CAS  Google Scholar 

  • Horikawa I, Barrett JC . (2001). Cis-activation of the human telomerase gene (hTERT) by the hepatitis B virus genome. J Natl Cancer Inst 93: 1171–1173.

    CAS  Google Scholar 

  • Hourigan LF, Macdonald GA, Purdie D, Whitehall VH, Shorthouse C, Clouston A et al. (1999). Fibrosis in chronic hepatitis C correlates significantly with body mass index and steatosis. Hepatology 29: 1215–1219.

    CAS  Google Scholar 

  • Hsieh TY, Matsumoto M, Chou HC, Schneider R, Hwang SB, Lee AS et al. (1998). Hepatitis C virus core protein interacts with heterogenous nuclear ribonucleoprotein K. J Biol Chem 273: 17651–17659.

    CAS  Google Scholar 

  • Iizuka N, Oka M, Yamada-Okabe H, Mori N, Tamesa T, Okada T et al. (2002). Comparison of gene expression profiles between hepatitis B virus- and hepatitis C virus-infected hepatocellular carcinoma by oligonucleotide microarray data on the basis of a supervised learning method. Cancer Res 62: 3939–3944.

    CAS  Google Scholar 

  • Iloeje UH, Yang HI, Su J, Jen CL, You SL, Chen CJ . (2006). Predicting cirrhosis risk based on the level of circulating hepatitis B viral load. Gastroenterology 130: 678–686.

    Google Scholar 

  • Irshad M, Dhar I . (2006). Hepatitis C virus core protein: an update on its molecular biology, cellular function and clinical implications. Med Princ Pract 15: 405–416.

    CAS  Google Scholar 

  • Jia L, Wang XW, Harris C . (1999). Hepatitis B virus X protein inhibits nucleotide excision repair. Int J Cancer 80: 875–879.

    CAS  Google Scholar 

  • Jin DY, Wang HL, Zhou Y, Chun AC, Kibler KV, Hou YD et al. (2000). Hepatitis C virus core protein-induced loss of LZIP function correlates with cellular transformation. EMBO J 19: 729–740.

    CAS  Google Scholar 

  • Kamegaya Y, Hiasa Y, Zukerberg L, Fowler N, Blackard JT, Lin W et al. (2005). Hepatitis C virus acts as a tumor accelerator by blocking apoptosis in a mouse model of hepatocarcinogenesis. Hepatology 41: 660–667.

    Google Scholar 

  • Kanda T, Steele R, Ray R, Ray RB . (2008). Hepatitis C virus core protein augments androgen receptor-mediated signaling. J Virol 82: 11066–11072.

    CAS  Google Scholar 

  • Kao JH, Chen PJ, Lai MY, Chen DS . (2000). Hepatitis B genotypes correlate with clinical outcomes in patients with chronic hepatitis B. Gastroenterology 118: 554–559.

    CAS  Google Scholar 

  • Kao JH, Chen PJ, Lai MY, Chen DS . (2003). Basal core promoter mutations of hepatitis B virus increase the risk of hepatocellular carcinoma in hepatitis B carriers. Gastroenterology 124: 327–334.

    CAS  Google Scholar 

  • Kato J, Miyanishi K, Kobune M . (2007). Iron, hepatitis C virus, and hepatocellular carcinoma: iron reduction preaches the gospel for chronic hepatitis C. J Gastroenterol 42: 923–926.

    Google Scholar 

  • Katoh H, Shibata T, Kokubu A, Ojima H, Loukopoulos P, Kanai Y et al. (2005). Genetic profile of hepatocellular carcinoma revealed by array-based comparative genomic hybridization: identification of genetic indicators to predict patient outcome. J Hepatol 43: 863–874.

    CAS  Google Scholar 

  • Keasler VV, Hodgson AJ, Madden CR, Slagle BL . (2007). Enhancement of hepatitis B virus replication by the regulatory X protein in vitro and in vivo. J Virol 81: 2656–2662.

    CAS  Google Scholar 

  • Kew MC . (2009). Hepatic iron overload and hepatocellular carcinoma. Cancer Lett 286: 38–43.

    CAS  Google Scholar 

  • Kidd-Ljunggren K, Miyakawa Y, Kidd AH . (2002). Genetic variability in hepatitis B viruses. J Gen Virol 83: 1267–1280.

    CAS  Google Scholar 

  • Kim CM, Koike K, Saito I, Miyamura T, Jay G . (1991). HBx gene of hepatitis B virus induces liver cancer in transgenic mice. Nature 351: 317–320.

    CAS  Google Scholar 

  • Kim K, Kim KH, Kim HH, Cheong J . (2008). Hepatitis B virus X protein induces lipogenic transcription factor SREBP1 and fatty acid synthase through the activation of nuclear receptor LXRalpha. Biochem J 416: 219–230.

    CAS  Google Scholar 

  • Kim KH, Shin HJ, Kim K, Choi HM, Rhee SH, Moon HB et al. (2007). Hepatitis B virus X protein induces hepatic steatosis via transcriptional activation of SREBP1 and PPAR-gamma. Gastroenterology 132: 1955–1967.

    CAS  Google Scholar 

  • Kittlesen DJ, Chianese-Bullock KA, Yao ZQ, Braciale TJ, Hahn YS . (2000). Interaction between complement receptor gC1qR and hepatitis C virus core protein inhibits T-lymphocyte proliferation. J Clin Invest 106: 1239–1249.

    CAS  Google Scholar 

  • Koike K . (2007). Pathogenesis of HCV-associated HCC: dual-pass carcinogenesis through activation of oxidative stress and intracellular signaling. Hepatol Res 37: S115–S120.

    CAS  Google Scholar 

  • Koike K . (2009). Steatosis, liver injury, and hepatocarcinogenesis in hepatitis C viral infection. J Gastroenterol 44 (Suppl XIX): 82–88.

    Google Scholar 

  • Koike K, Moriya K, Iino S, Yotsuyanagi H, Endo Y, Miyamura T et al. (1994). High-level expression of hepatitis B virus HBx gene and hepatocarcinogenesis in transgenic mice. Hepatology 19: 810–819.

    CAS  Google Scholar 

  • Kordes C, Sawitza I, Müller-Marbach A, Ale-Agha N, Keitel V, Klonowski-Stumpe H et al. (2007). CD133+ hepatic stellate cells are progenitor cells. Biochem Biophys Res Commun 352: 410–417.

    CAS  Google Scholar 

  • Korenaga M, Wang T, Li Y, Showalter LA, Chan T, Sun J et al. (2005). Hepatitis C virus core protein inhibits mitochondrial electron transport and increases ROS production. J Biol Chem 280: 37481–37488.

    CAS  Google Scholar 

  • Kremsdorf D, Soussan P, Paterlini-Brechot P, Brechot C . (2006). Hepatitis B virus-related hepatocellular carcinoma: paradigms for viral-related human carcinogenesis. Oncogene 25: 3823–3833.

    CAS  Google Scholar 

  • Kummee P, Tangkijvanich P, Poovorawan Y, Hirankarn N . (2007). Association of HLA-DRB1*13 and TNF-alpha gene polymorphisms with clearance of chronic hepatitis B infection and risk of hepatocellular carcinoma in Thai population. J Viral Hepatitis 14: 841–848.

    CAS  Google Scholar 

  • Kusano N, Shiraishi K, Kubo K, Oga A, Okita K, Sasaki K . (1999). Genetic aberrations detected by comparative genomic hybridization in hepatocellular carcinomas: their relationship to clinicopathological features. Hepatology 29: 1858–1862.

    CAS  Google Scholar 

  • Kusano N, Okita K, Shirahashi H, Harada T, Shiraishi K, Oga A et al. (2002). Chromosomal imbalances detected by comparative genomic hybridization are associated with outcome of patients with hepatocellular carcinoma. Cancer 94: 746–751.

    Google Scholar 

  • Kwun HJ, Jang KL . (2003). Dual effects of hepatitis-C virus core protein on the transcription of cyclin-dependent kinase inhibitor p21 gene. J Viral Hepat 10: 249–255.

    CAS  Google Scholar 

  • Kwun HJ, Jung EY, Ahn JY, Lee MN, Jang KL . (2001). p53-dependent transcriptional repression of p21 (waf1) by hepatitis C virus NS3. J Gen Virol 82: 2235–2241.

    CAS  Google Scholar 

  • Lan KH, Sheu ML, Hwang SJ, Yen SH, Chen SY, Wu JC et al. (2002). HCV NS5A interacts with p53 and inhibits p53-mediated apoptosis. Oncogene 21: 4801–4811.

    CAS  Google Scholar 

  • Lee SG, Rho HM . (2000). Transcriptional repression of the human p53 gene by hepatitis B viral X protein. Oncogene 19: 468–471.

    CAS  Google Scholar 

  • Leenders MW, Nijkamp MW, Rinkes IHB . (2008). Mouse models in liver cancer research: a review of current literature. World J Gastroenterol 14: 6915–6923.

    CAS  Google Scholar 

  • Lerat H, Honda M, Beard MR, Loesch K, Sun J, Yang Y et al. (2002). Steatosis and liver cancer in transgenic mice expressing the structural and nonstructural proteins of hepatitis C virus. Gastroenterology 122: 352–365.

    CAS  Google Scholar 

  • Lev S, Moreno H, Martinez R, Canoll P, Peles E, Musacchio JM et al. (1995). Protein tyrosine kinase PYK2 involved in Ca(2+)-induced regulation of ion channel and MAP kinase functions. Nature 376: 737–745.

    CAS  Google Scholar 

  • Li B, Gao B, Ye L, Han X, Wang W, Kong L et al. (2007). Hepatitis B virus X protein (HBx) activates ATF6 and IRE1-XBP1 pathways of unfolded protein response. Virus Res 124: 44–49.

    CAS  Google Scholar 

  • Lin YW, Sheu JC, Liu LY, Chen CH, Lee HS, Huang GT et al. (1999). Chromosomal abnormality in hepatocellular carcinoma by comparative genomic hybridisation in Taiwan. Eur J Cancer 35: 652–658.

    CAS  Google Scholar 

  • Lindenbach BD, Rice CM . (2005). Unravelling hepatitis C virus replication from genome to function. Nature 930: 933–938.

    Google Scholar 

  • Liu CJ, Kao JH, Chen DS . (2005). Therapeutic implications of hepatitis B virus genotypes. Liver Int 25: 1097–1107.

    CAS  Google Scholar 

  • Liu H, Luan F, Ju Y, Shen H, Gao L, Wang X et al. (2007). in vitro transfection of the hepatitis B virus PreS2 gene into the human hepatocarcinoma cell line HepG2 induces upregulation of human telomerase reverse transcriptase. Biochem Biophys Res Commun 355: 379–384.

    CAS  Google Scholar 

  • Livingston SE, Simonetti JP, McMahon BJ, Bulkow LR, Hurlburt KJ, Homan CE et al. (2007). Hepatitis B virus genotypes in Alaska native people with hepatocellular carcinoma: preponderance of genotype F. J Infect Dis 195: 5–11.

    CAS  Google Scholar 

  • Llovet JM, Bruix J . (2008a). Molecular targeted therapies in hepatocellular carcinoma. Hepatology 48: 1312–1327.

    CAS  Google Scholar 

  • Llovet JM, Chen Y, Wurmbach E, Roayaie S, Fiel MI, Schwartz M et al. (2006). A molecular signature to discriminate dysplastic nodules from early hepatocellular carcinoma in HCV cirrhosis. Gastroenterology 131: 1758–1767.

    CAS  Google Scholar 

  • Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF et al. (2008b). Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 24: 378–390.

    Google Scholar 

  • Locarnini S, McMillan J, Bartholomeusz A . (2003). The hepatitis B virus and common mutants. Sem Liver Disease 23: 5–20.

    CAS  Google Scholar 

  • Lonardo A, Adinolfi LE, Loria P, Carulli N, Ruggiero G, Day CP . (2004). Steatosis and hepatitis C virus: mechanisms and significance for hepatic and extrahepatic disease. Gastroenterology 1262: 586–597.

    Google Scholar 

  • Longato L, de la Monte S, Kuzushita N, Horimoto M, Rogers AB, Slagle BL et al. (2009). Overexpression of insulin receptor substrate-1 and hepatitis Bx genes causes premalignant alterations in the liver. Hepatology 49: 1935–1943.

    CAS  Google Scholar 

  • Longo L, Platini F, Scardino A, Alabiso O, Vasapollo G, Tessitore L . (2008). Autophagy inhibition enhances anthocyanin-induced apoptosis in hepatocellular carcinoma. Mol Cancer Ther 7: 2476–2485.

    CAS  Google Scholar 

  • Luber B, Arnold N, Sturzl M, Höhne M, Schirmacher P, Lauer U et al. (1996). Hepatoma-derived integrated HBV DNA causes multi-stage transformation in vitro. Oncogene 12: 1597–1608.

    CAS  Google Scholar 

  • Machida K, Cheng KT, Lai CK, Jeng KS, Sung VM, Lai MM . (2006). Hepatitis C virus triggers mitochondrial permeability transition with production of reactive oxygen species, leading to DNA damage and STAT3 activation. J Virol 80: 7199–7207.

    CAS  Google Scholar 

  • Mahmood S, Kawanaka M, Kamei A, Izumi A, Nakata K, Niiyama G et al. (2004). Immunohistochemical evaluation of oxidative stress markers in chronic hepatitis C. Antioxid Redox Signal 6: 19–24.

    CAS  Google Scholar 

  • Majumder M, Ghosh AK, Steele R, Ray R, Ray RB . (2001). Hepatitis C virus NS5A physically associates with p53 and regulates p21/waf1 gene expression in a p53-dependent manner. J Virol 75: 1401–1407.

    CAS  Google Scholar 

  • Majumder M, Steele R, Ghosh AK, Zhou XY, Thornburg L, Ray R et al. (2003). Expression of hepatitis C virus non-structural 5A protein in the liver of transgenic mice. FEBS Lett 555: 528–532.

    CAS  Google Scholar 

  • Martindale JL, Holbrook NJ . (2002). Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192: 1–15.

    CAS  Google Scholar 

  • Martin-Lluesma S, Schaeffer C, Robert EI, van Breugel PC, Leupin O, Hantz O et al. (2008). Hepatitis B virus X protein affects S phase progression leading to chromosome segregation defects by binding to damaged DNA binding protein 1. Hepatology 48: 1467–1476.

    CAS  Google Scholar 

  • Martín-Vílchez S, Sanz-Cameno P, Rodríguez-Muñoz Y, Majano PL, Molina-Jiménez F, López-Cabrera M et al. (2008). The hepatitis B virus X protein induces paracrine activation of human hepatic stellate cells. Hepatology 47: 1872–1883.

    Google Scholar 

  • Mas VR, Maluf DG, Archer KJ, Yanek K, Kong X, Kulik L et al. (2009). Genes involved in viral carcinogenesis and tumor initiation in hepatitis C virus-induced hepatocellular carcinoma. Mol Med 15: 85–94.

    CAS  Google Scholar 

  • Matsuzaki K . (2009). Modulation of TGF-beta signaling during progression of chronic liver diseases. Front Bioscience 14: 2923–2934.

    CAS  Google Scholar 

  • Matsuzaki K, Murata M, Yoshida K, Sekimoto G, Uemura Y, Sakaida N et al. (2007). Chronic inflammation associated with hepatitis C virus infection perturbs hepatic transforming growth factor beta signaling, promoting cirrhosis and hepatocellular carcinoma. Hepatology 46: 48–57.

    CAS  Google Scholar 

  • Ming L, Thorgeirsson SS, Gail MH, Lu P, Harris CC, Wang N et al. (2002). Dominant role of hepatitis B virus and cofactor role of aflatoxin in hepatocarcinogenesis in Qidong, China. Hepatology 36: 1214–1220.

    CAS  Google Scholar 

  • Missiha SB, Ostrowski M, Heathcote EJ . (2008). Disease progression in chronic hepatitis C: modifiable and nonmodifiable factors. Gastroenterology 134: 1699–1714.

    CAS  Google Scholar 

  • Moinzadeh P, Breuhahn K, Stutzer H, Schirmacher P . (2005). Chromosome alterations in human hepatocellular carcinomas correlate with aetiology and histological grade: results of an explorative CGH meta-analysis. Br J Cancer 92: 935–941.

    CAS  Google Scholar 

  • Moradpour D, Penin F, Rice CM . (2007). Replication of hepatitis C virus. Nat Rev Microb 5: 453–463.

    CAS  Google Scholar 

  • Moriya K, Yotsuyanagi H, Shintani Y, Fujie H, Ishibashi K, Matsuura Y et al. (1997). Hepatitis C virus core protein induces hepatic steatosis in transgenic mice. J Gen Virol 78: 1527–1531.

    CAS  Google Scholar 

  • Moriya K, Fujie H, Shintani Y, Yotsuyanagi H, Tsutsumi T, Matsuura Y et al. (1998). Hepatitis C virus core protein induces hepatocellular carcinoma in transgenic mice. Nat Med 4: 1065–1068.

    CAS  Google Scholar 

  • Moriya K, Nakagawa K, Santa T, Shintani Y, Fujie H, Miyosh H et al. (2001). Oxidative stress in the absence of inflammation in a mouse model for hepatitis C virus-associated hepatocarcinogenesis. Cancer Res 61: 4365–4370.

    CAS  Google Scholar 

  • Moriyama M, Matsumura H, Fukushima A, Ohkido K, Arakawa Y, Nirei K et al. (2006). Clinical significance of evaluation of serum zinc concentrations in C-viral chronic liver disease. Dig Dis Sci 51: 1967–1977.

    CAS  Google Scholar 

  • Murakami Y, Saigo K, Takashima H, Minami M, Okanoue T, Bréchot C et al. (2005). Large scaled analysis of hepatitis B virus (HBV) DNA integration in HBV related hepatocellular carcinomas. Gut 54: 1162–1168.

    CAS  Google Scholar 

  • Murata M, Matsuzaki K, Yoshida K, Sekimoto G, Tahashi Y, Mori S et al. (2009). Hepatitis B virus X protein shifts human hepatic transforming growth factor (TGF)-beta signaling from tumor suppression to oncogenesis in early chronic hepatitis B. Hepatology 49: 1203–1217.

    CAS  Google Scholar 

  • Myung SJ, Yoon JH, Gwak GY, Kim W, Lee JH, Kim KM et al. (2007). Wnt signaling enhances the activation and survival of human hepatic stellate cells. FEBS Lett 581: 2954–2958.

    CAS  Google Scholar 

  • Na TY, Shin YK, Roh KJ, Kang SA, Hong I, Oh SJ et al. (2009). Liver X receptor mediates hepatitis B virus x protein-induced lipogenesis in hepatitis B virus-associated hepatocellular carcinoma. Hepatology 49: 1122–1131.

    CAS  Google Scholar 

  • Naas T, Ghorbani M, Alvarez-Maya I, Lapner M, Kothary R, De Repentigny Y et al. (2005). Characterization of liver histopathology in a transgenic mouse model expressing genotype 1a hepatitis C virus core and envelope proteins 1 and 2. J Gen Virol 86: 2185–2196.

    CAS  Google Scholar 

  • Newell P, Villanueva A, Friedman SL, Koike K, Llovet JM . (2008). Experimental models of hepatocellular carcinoma. J Hepatol 485: 858–879.

    Google Scholar 

  • Niki T, Pekny M, Hellemans K, Bleser PD, Berg KV, Vaeyens F et al. (1999). Class VI intermediate filament protein Nestin is induced during activation of rat hepatic stellate cells. Hepatology 29: 520–527.

    CAS  Google Scholar 

  • Nishida N, Nagasaka T, Nishimura T, Ikai I, Boland CR, Goel A . (2008). Aberrant methylation of multiple tumor suppressor genes in aging liver, chronic hepatitis, and hepatocellular carcinoma. Hepatology 47: 908–918.

    CAS  Google Scholar 

  • Nunez O, Fernandez-Martinez A, Majano PL, Apolinario A, Gomez-Gonzalo M, Benedicto I et al. (2004). Increased intrahepatic cyclooxygenase 2, matrix metalloproteinase 2, and matrix metalloproteinase 9 expression is associated with progressive liver disease in chronic hepatitis C virus infection: role of viral core and NS5A proteins. Gut 53: 1665–1672.

    CAS  Google Scholar 

  • Oh JC, Jeong DL, Kim IK, Oh SH . (2003). Activation of calcium signaling by hepatitis B virus-X protein in liver cells. Exp Mol Med 35: 301–309.

    CAS  Google Scholar 

  • Ohata K, Hamasaki K, Toriyama K, Matsumoto K, Saeki A, Yanagi K et al. (2003). Hepatic steatosis is a risk factor for hepatocellular carcinoma in patients with chronic hepatitis C virus infection. Cancer 97: 3036–3043.

    Google Scholar 

  • Okabe H, Ikai I, Matsuo K, Satoh S, Momoi H, Kamikawa T et al. (2000). Comprehensive allelotype study of hepatocellular carcinoma: potential differences in pathways to hepatocellular carcinoma between hepatitis B virus-positive and -negative tumors. Hepatology 31: 1073–1079.

    CAS  Google Scholar 

  • Okabe H, Satoh S, Kato T, Kitahara O, Yanagawa R, Yamaoka Y et al. (2001). Genome-wide analysis of gene expression in human hepatocellular carcinomas using cDNA microarray: identification of genes involved in viral carcinogenesis and tumor progression. Cancer Res 61: 2129–2137.

    CAS  Google Scholar 

  • Okuda M, Li K, Beard MR, Showalter LA, Scholle F, Lemon SM et al. (2002). Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein. Gastroenterology 122: 366–375.

    CAS  Google Scholar 

  • Okuno M, Kojima S, Akita K, Matsushima-Nishiwaki R, Adachi S, Sano T et al. (2002). Retinoids in liver fibrosis and cancer. Front Biosci 1: d204–d218.

    Google Scholar 

  • Pang R, Lee TK, Poon RT, Fan ST, Wong KB, Kwong YL et al. (2007). Pin1 interacts with a specific serine-proline motif of hepatitis B virus X-protein to enhance hepatocarcinogenesis. Gastroenterology 132: 1088–1103.

    CAS  Google Scholar 

  • Park IY, Sohn BH, Yu E, Suh DJ, Chung YH et al. (2007). Aberrant epigenetic modifications in hepatocarcinogenesis induced by hepatitis B virus X protein. Gastroenterology 132: 1476–1494.

    CAS  Google Scholar 

  • Parkin DM, Pisani P, Ferlay J . (1999). Estimates of the worldwide incidence of 25 major cancers in 1990. Int J Cancer 80: 827–841.

    CAS  Google Scholar 

  • Parkin DM, Bray F, Ferlay J, Pisani P . (2001). Estimating the world cancer burden: Globocan 2000. Int J Cancer 94: 153–156.

    CAS  Google Scholar 

  • Parsons CJ, Takashima M, Rippe RA . (2007). Molecular mechanisms of hepatic fibrogenesis. J Gastroenterol Hepatology Suppl 1: S79–S84.

    Google Scholar 

  • Pekow JR, Bhan AK, Zheng H, Chung RT . (2007). Hepatic steatosis is associated with increased frequency of hepatocellular carcinoma in patients with hepatitis C-related cirrhosis. Cancer 109: 2490–2496.

    Google Scholar 

  • Perz JF, Armstrong GL, Farrington LA, Hutin YJ, Bell BP . (2006). The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol 45: 529–538.

    Google Scholar 

  • Pinzani M, Milani S, Herbst H, DeFranco R, Grappone C, Gentilini A et al. (1996). Expression of platelet derived growth factor and its receptor in normal human liver and during active hepatic fibrogenesis. Am J Pathol 148: 785–800.

    CAS  Google Scholar 

  • Poon TC, Wong N, Lai PB, Rattray M, Johnson PJ, Sung JJ . (2006). A tumor progression model for hepatocellular carcinoma: bioinformatic analysis of genomic data. Gastroenterology 131: 1262–1270.

    CAS  Google Scholar 

  • Qadri I, Iwahashi M, Capasso JM, Hopken MW, Flores S et al. (2004). Induced oxidative stress and activated expression of manganese superoxide dismutase during hepatitis C virus replication: role of JNK, p38 MAPK and AP-1. Biochem J 378: 919–928.

    CAS  Google Scholar 

  • Qadri I, Iwahashi M, Simon F . (2002). Hepatitis C virus NS5A protein binds TBP and p53, inhibiting their DNA binding and p53 interactions with TBP and ERCC3. Biochem Biophys Acta 21: 193–204.

    Google Scholar 

  • Qi P, Chen YM, Wang H, Fang M, Ji Q, Zhao YP et al. (2009). 509C>T polymorphism in the TGF-beta1 gene promoter, impact on the hepatocellular carcinoma risk in Chinese patients with chronic hepatitis B virus infection. Cancer Immunol Immunother 58: 1433–1440.

    CAS  Google Scholar 

  • Ray RB, Steele R, Meyer K, Ray R . (1997). Transcriptional repression of p53 promoter by hepatitis C virus core protein. J Biol Chem 272: 10983–10986.

    CAS  Google Scholar 

  • Roskams T . (2006). Different types of liver progenitor cells and their niches. J Hepatol 45: 1–4.

    Google Scholar 

  • Sakamuro D, Furukawa T, Takegami T . (1995). Hepatitis C virus nonstructural protein NS3 transforms NIH 3T3 cells. J Virol 69: 3893–3896.

    CAS  Google Scholar 

  • Satyanarayana A, Manns MP, Rudolph KL . (2004). Telomeres and telomerase: a dual role in hepatocarcinogenesis. Hepatology 40: 276–283.

    CAS  Google Scholar 

  • Schaefer S . (2005). Hepatitis B virus: significance of genotypes. J Viral Hepat 12: 111–124.

    CAS  Google Scholar 

  • Schluter V, Meyer M, Hofschneider PH, Koshy R, Caselmann WH . (1994). Integrated hepatitis B virus X and 3′ truncated preS/S sequences derived from human hepatomas encode functionally active transactivators. Oncogene 9: 3335–3344.

    CAS  Google Scholar 

  • Severi T, Vander Borght S, Libbrecht L, VanAelst L, Nevens F, Roskams T et al. (2007). HBx or HCV core gene expression in HepG2 human liver cells results in a survival benefit against oxidative stress with possible implications for HCC development. Chem Biol Interact 168: 128–134.

    CAS  Google Scholar 

  • Shafritz DA, Shouval D, Sherman HI, Hadziyannis SJ, Kew MC . (1981). Integration of hepatitis B virus DNA into the genome of liver cells in chronic liver disease and hepatocellular carcinoma studies in percutaneous liver biopsies and post-mortem tissue specimens. N Engl J Med 305: 1067–1073.

    CAS  Google Scholar 

  • Shin HD, Park BL, Kim LH, Jung JH, Kim JY, Yoon JH et al. (2003). Interleukin 10 haplotype associated with increased risk of hepatocellular carcinoma. Hum Mol Genet 12: 901–906.

    CAS  Google Scholar 

  • Shin JY, Hur W, Wang JS, Jang JW, Kim CW, Bae SH et al. (2005). HCV core protein promotes liver fibrogenesis via up-regulation of CTGF with TGF-beta1. Exp Mol Med 37: 138–145.

    CAS  Google Scholar 

  • Sir D, Chen WL, Choi J, Wakita T, Yen TS, Ou JH . (2008). Induction of incomplete autophagic response by hepatitis C virus via the unfolded protein response. Hepatology 48: 1054–1061.

    CAS  Google Scholar 

  • Sirma H, Weil R, Rosmorduc O, Urban S, Israël A, Kremsdorf D et al. (1998). Cytosol is the prime compartment of hepatitis B virus where it colocalizes with the proteasome. Oncogene 16: 2051–2063.

    CAS  Google Scholar 

  • Sorrell MF, Belongia EA, Costa J, Gareen IF, Grem JL, Inadomi JM et al. (2009). National Institutes of Health consensus development conference statement: management of hepatitis B. Hepatology 49 (5 Suppl): S4–S12.

    Google Scholar 

  • Street A, Macdonald A, McCormick C, Harris M . (2005). Hepatitis C virus NS5A-mediated activation of phosphoinositide 3-kinase results in stabilization of cellular beta-catenin and stimulation of beta-catenin-responsive transcription. J Virol 79: 5006–5016.

    CAS  Google Scholar 

  • Su F, Schneider RJ . (1996). HBx protein activates transcription factor NF-kappaB by acting on multiple cytoplasmic inhibitors of rel-related proteins. J Virol 70: 4558–4566.

    CAS  Google Scholar 

  • Su PF, Lee TC, Lin PJ, Lee PH, Jeng YM, Chen CH et al. (2007). Differential DNA methylation associated with hepatitis B virus infection in hepatocellular carcinoma. Int J Cancer 121: 1257–1264.

    CAS  Google Scholar 

  • Sumida Y, Nakashima T, Yoh T, Nakajima Y, Ishikawa H, Mitsuyoshi H et al. (2000). Serum thioredoxin levels as an indicator of oxidative stress in patients with hepatitis C virus infection. J Hepatology 13: 159–163.

    Google Scholar 

  • Sy SM, Wong N, Lai PB, To KF, Johnson PJ . (2005). Regional over-representations on chromosomes 1q, 3q and 7q in the progression of hepatitis B virus-related hepatocellular carcinoma. Mod Pathol 18: 686–692.

    CAS  Google Scholar 

  • Tai AW, Chung RT . (2009). Treatment failure in hepatitis C: mechanisms of non-response. J Hepatol 50: 412–420.

    CAS  Google Scholar 

  • Tai PC, Suk FM, Gerlich WH, Neurath AR, Shih C . (2002). Hypermodification and immune escape of an internally deleted middle-envelope (M) protein of frequent and predominant hepatitis B virus variants. Virology 292: 44–58.

    CAS  Google Scholar 

  • Takeya R, Sumimoto H . (2006). Regulation of novel superoxideproducing NAD(P)H oxidases. Antioxid Redox Signal 8: 1523–1532.

    CAS  Google Scholar 

  • Tanaka N, Moriya K, Kiyosawa K, Koike K, Aoyama T . (2008a). Hepatitis C virus core protein induces spontaneous and persistent activation of peroxisome proliferator-activated receptor alpha in transgenic mice: implications for HCV-associated hepatocarcinogenesis. Int J Cancer 122: 124–131.

    CAS  Google Scholar 

  • Tanaka N, Moriya K, Kiyosawa K, Koike K, Gonzalez FJ, Aoyama T . (2008b). PPAR-α is essential for severe hepatic steatosis and hepatocellular carcinoma induced by HCV core protein. J Clin Invest 118: 683–694.

    Google Scholar 

  • Tang H, Da L, Mao Y, Li Y, Li D, Xu Z et al. (2009). Hepatitis B virus X protein sensitizes cells to starvation-induced autophagy via up-regulation of beclin 1 expression. Hepatology 49: 60–71.

    CAS  Google Scholar 

  • Tang H, Oishi N, Kaneko S, Murakami S . (2006). Molecular functions and biological roles of hepatitis B virus x protein. Cancer Sci 97: 977–983.

    CAS  Google Scholar 

  • Taniguchi H, Kato N, Otsuka M, Goto T, Yoshida H, Shiratori Y et al. (2004). Hepatitis C virus core protein upregulates transforming growth factor-beta 1 transcription. J Med Virol 72: 52–59.

    CAS  Google Scholar 

  • Tardif KD, Mori K, Siddiqui A . (2002). Hepatitis C virus subgenomic replicons induce endoplasmic reticulum stress activating an intracellular signaling pathway. J Virol 76: 7453–7459.

    CAS  Google Scholar 

  • Tennant B, Toshkov I, Peek SF, Jacob JR, Menne S, Hornbuckle WE et al. (2004). Hepatocellular carcinoma in the Woodchuck model of hepatitis B virus infection. Gastroenterology 127: S283–S293.

    Google Scholar 

  • Thakur V, Guptan RC, Kazim SN, Malhotra V, Sarin SK . (2002). Profile, spectrum and significance of HBV genotypes in chronic liver disease patients in the Indian subcontinent. J Gastroenterol Hepatol 17: 165–170.

    Google Scholar 

  • Tien Kuo M, Savaraj N . (2006). Roles of reactive oxygen species in hepatocarcinogenesis and drug resistance gene expression in liver cancers. Mol Carcinog 459: 701–709.

    Google Scholar 

  • Tsuchiya H, Akechi Y, Ikeda R, Nishio R, Sakabe T, Terabayashi K et al. (2009). Suppressive effects of retinoids on iron-induced oxidative stress in the liver. Gastroenterology 136: 341–350.

    CAS  Google Scholar 

  • Tsutsumi T, Suzuki T, Shimoike T, Moriya K, Yotsuyanagi H, Matsuura Y et al. (2002). Interaction of hepatitis C virus core protein with retinoid X receptor-α modulates its transcriptional activity. Hepatology 35: 937–946.

    CAS  Google Scholar 

  • Ura S, Honda M, Yamashita T, Ueda T, Takatori H, Nishino R et al. (2009). Differential microRNA expression between hepatitis B and hepatitis C leading disease progression to hepatocellular carcinoma. Hepatology 49: 1098–1112.

    CAS  Google Scholar 

  • Varnholt H, Drebber U, Schulze F, Wedemeyer I, Schirmacher P, Dienes HP et al. (2008). MicroRNA gene expression profile of hepatitis C virus-associated hepatocellular carcinoma. Hepatology 47: 1223–1232.

    CAS  Google Scholar 

  • Villanueva A, Newell P, Chiang DY . (2007). Genomics and signaling pathways in hepatocellular carcinoma. Semin Liver Dis 27: 55–76.

    CAS  Google Scholar 

  • Wang HC, Huang W, Lai MD, Shu IJ . (2006). Hepatitis B virus pre-S mutants, endoplasmic reticulum stress and hepatocarcinogenesis. Cancer Sci 97: 683–688.

    CAS  Google Scholar 

  • Wang J, Zindy F, Chenivesse X, Lamas E, Henglein B, Bréchot C et al. (1992). Modification of cyclin A expression by HBV DNA integration in a HCC. Oncogene 7: 1652–1656.

    Google Scholar 

  • Wang T, Weinman SA . (2006). Causes and consequences of mitochondrial reactive oxygen species generation in hepatitis C. J Gastroenterol Hepatol 21: S34–S37.

    CAS  Google Scholar 

  • Wang XW, Forrester K, Yeh H, Feitelson MA, Gu JR, Harris CC . (1994). Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity and association with ERCC3. Proc Natl Acad Sci USA 91: 2230–2234.

    CAS  Google Scholar 

  • Wong CM, Ng IO . (2008). Molecular pathogenesis of hepatocellular carcinoma. Liver Int 28: 160–174.

    CAS  Google Scholar 

  • Wu CF, Yu MW, Lin CL, Liu CJ, Shih WL, Tsai KS et al. (2008). Long-term tracking of hepatitis B viral load and the relationship with risk for hepatocellular carcinoma in men. Carcinogenesis 29: 106–112.

    CAS  Google Scholar 

  • Wu SC, Chang SC, Wu HY, Liao PJ, Chang MF . (2008). Hepatitis C virus NS5A protein down-regulates the expression of spindle gene Aspm through PKR-p38 signaling pathway. J Biol Chem 283: 29396–29404.

    CAS  Google Scholar 

  • Wurmbach E, Chen YB, Khitrov G, Zhang W, Roayaie S, Schwartz M et al. (2007). Genome-wide molecular profiles of HCV-induced dysplasia and hepatocellular carcinoma. Hepatology 45: 938–947.

    CAS  Google Scholar 

  • Yaginuma K, Kobayashi H, Kobayashi M, Morishima T, Matsuyama K, Koike K . (1987). Multiple integration site of hepatitis B virus DNA in hepatocellular carcinoma and chronic active hepatitis tissues from children. J Virol 61: 1808–1813.

    CAS  Google Scholar 

  • Yamanaka T, Kodama T, Doi T . (2002). Subcellular localization of HCV core protein regulates its ability for p53 activation and p21 suppression. Biochem Biophys Res Commun 294: 528–534.

    CAS  Google Scholar 

  • Yanagitani A, Yamada S, Yasui S, Shimomura T, Murai R, Murawaki Y et al. (2004). Retinoic acid receptor alpha dominant negative form causes steatohepatitis and liver tumors in transgenic mice. Hepatology 40: 366–375.

    CAS  Google Scholar 

  • Yang HI, Yeh SH, Chen PJ, Iloeje UH, Jen CL, Su J, et al., REVEAL-HBV Study Group. (2008). Associations between hepatitis B virus genotype and mutants and the risk of hepatocellular carcinoma. J Natl Cancer Inst 100: 1134–1143.

    CAS  Google Scholar 

  • Yang JC, Teng CF, Wu HC, Tsai HW, Chuang HC, Tsai TF et al. (2009). Enhanced expression of vascular endothelial growth factor-A in ground glass hepatocytes and its implication in hepatitis B virus hepatocarcinogenesis. Hepatology 49: 1962–1971.

    CAS  Google Scholar 

  • Yang L, Wang Y, Mao H, Fleig S, Omenetti A, Brown KD et al. (2008). Sonic hedgehog is an autocrine viability factor for myofibroblastic hepatic stellate cells. J Hepatol 48: 98–106.

    CAS  Google Scholar 

  • Yoo YD, Ueda H, Park K, Flanders KC, Lee YI, Jay G et al. (1996). Regulation of transforming growth factor-beta 1 expression by the hepatitis B virus (HBV) X transactivator. Role in HBV pathogenesis. J Clin Invest 97: 388–395.

    CAS  Google Scholar 

  • You LR, Chen CM, Yeh TS, Tsai TY, Mai RT, Lin CH et al (1999). Hepatitis C virus core protein interacts with cellular putative RNA helicase. J Virol 73: 2841–2853.

    CAS  Google Scholar 

  • Yu DY, Moon HB, Son JK, Jeong S, Yu SL, Yoon H et al. (1999). Incidence of hepatocellular carcinoma in transgenic mice expressing the hepatitis B virus X-protein. J Hepatol 31: 123–132.

    CAS  Google Scholar 

  • Yu MW, Horng IS, Hsu KH, Chiang YC, Liaw YF, Chen CJ . (1999). Plasma selenium levels and risk of hepatocellular carcinoma among men with chronic hepatitis virus infection. Am J Epidemiol 150: 367–374.

    CAS  Google Scholar 

  • Yu MW, Yang YC, Yang SY, Cheng SW, Liaw YF et al. (2001). Hormonal markers and hepatitis B virus-related hepatocellular carcinoma risk: a nested case-control study among men. J Natl Cancer Inst 93: 1644–1651.

    CAS  Google Scholar 

  • Yu MW, Yang SY, Pan IJ, Lin CL, Liu CJ, Liaw YF et al. (2003). Polymorphisms in XRCC1 and glutathione S-transferase genes and hepatitis B-related hepatocellular carcinoma. J Natl Cancer Inst 95: 1485–1488.

    CAS  Google Scholar 

  • Yu MW, Yeh SH, Chen PJ, Liaw YF, Lin CL, Liu CJ et al. (2005). Hepatitis B virus genotype and DNA level and hepatocellular carcinoma: a prospective study in men. J Natl Cancer Inst 97: 265–272.

    CAS  Google Scholar 

  • Yuan JM, Gao YT, Ong CN, Ross RK, Yu MC . (2006). Prediagnostic level of serum retinol in relation to reduced risk of hepatocellular carcinoma. J Natl Cancer Inst 98: 482–490.

    CAS  Google Scholar 

  • Yuan JM, Ambinder A, Fan Y, Gao YT, Yu MC, Groopman JD . (2009). Prospective evaluation of hepatitis B 1762(T)/1764(A) mutations on hepatocellular carcinoma development in Shanghai, China. Cancer Epidemiol Biomarkers Prev 18: 590–594.

    CAS  Google Scholar 

  • Zemel R, Gerechet S, Greif H, Bachmatove L, Birk Y, Golan-Goldhirsh A et al (2001). Cell transformation induced by hepatitis C virus NS3 serine protease. J Viral Hepat 8: 96–102.

    CAS  Google Scholar 

  • Zhao LJ, Wang L, Ren H, Cao J, Li L, Ke JS et al. (2005). Hepatitis C virus E2 protein promotes human hepatoma cell proliferation through the MAPK/ERK signaling pathway via cellular receptors. Exp Cell Res 305: 23–32.

    CAS  Google Scholar 

  • Zheng DL, Zhang L, Cheng N, Xu X, Deng Q, Teng XM et al. (2009). Epigenetic modification induced by hepatitis B virus X protein via interaction with de novo DNA methyltransferase DNMT3A. J Hepatol 50: 377–387.

    CAS  Google Scholar 

  • Zondervan PE, Wink J, Alers JC, IJzermans JN, Schalm SW, de Man RA et al. (2000). Molecular cytogenetic evaluation of virus-associated and non-viral hepatocellular carcinoma: analysis of 26 carcinomas and 12 concurrent dysplasias. J Pathol 192: 207–215.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH Grants DK078772 and AI069939 (both to RTC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R T Chung.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, WL., Chung, R. Viral hepatocarcinogenesis. Oncogene 29, 2309–2324 (2010). https://doi.org/10.1038/onc.2010.36

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.36

Keywords

Search

Quick links