[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Deacetylation of cortactin by SIRT1 promotes cell migration

An Editorial Expression of Concern to this article was published on 15 July 2024

This article has been updated

Abstract

Cortactin binds F-actin and promotes cell migration. We showed earlier that cortactin is acetylated. Here, we identify SIRT1 (a class III histone deacetylase) as a cortactin deacetylase and p300 as a cortactin acetylase. We show that SIRT1 deacetylates cortactin in vivo and in vitro and that the SIRT1 inhibitor EX-527 increases amounts of acetylated cortactin in ovarian cancer cells. We also show that p300 acetylates cortactin in vivo and that cells lacking or depleted of p300 express less-acetylated cortactin than do control cells. Deletion analysis mapped the SIRT1-binding domain of cortactin to its repeat region, which also binds F-actin. Mouse embryo fibroblasts (MEFs) lacking sir2α (the mouse homolog of SIRT1) migrated more slowly than did wild-type cells. The expression of SIRT1 in sir2α-null cells restored migratory capacity, as did expression of a deacetylation-mimetic mutant of cortactin. SIRT1 and cortactin were more abundant in breast tumor tissue than in their normal counterparts, whereas SIRT1 expression inversely correlates with the ratio of acetylation cortactin versus total cortactin. These data suggest that deacetylation of cortactin is associated with high levels of SIRT1 and tumorigenesis. Finally, breast and ovarian cancer cell lines expressing an acetylation mimetic mutant of cortactin are less motile than that of control cells, whereas cells expressing the deacetylation mimetic mutant of cortactin migrate faster than that of control cells in Transwell migration assays. In summary, our results suggest that cortactin is a novel substrate for SIRT1 and p300 and, for the first time, a possible role for SIRT1 in cell motility through deacetylation of cortactin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Change history

References

  • Aizawa H, Hu SC, Bobb K, Balakrishnan K, Ince G, Gurevich I et al. (2004). Dendrite development regulated by CREST, a calcium-regulated transcriptional activator. Science 303: 197–202.

    Article  CAS  Google Scholar 

  • Bereshchenko OR, Gu W, Dalla-Favera R . (2002). Acetylation inactivates the transcriptional repressor BCL6. Nat Genet 32: 606–613.

    Article  CAS  Google Scholar 

  • Blander G, Guarente L . (2004). The Sir2 family of protein deacetylases. Annu Rev Biochem 73: 417–435.

    Article  CAS  Google Scholar 

  • Bouras T, Fu M, Sauve AA, Wang F, Quong AA, Perkins ND et al. (2005). SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1. J Biol Chem 280: 10264–10276.

    Article  CAS  Google Scholar 

  • Bourguignon LY, Zhu H, Shao L, Chen YW . (2001). CD44 interaction with c-Src kinase promotes cortactin-mediated cytoskeleton function and hyaluronic acid-dependent ovarian tumor cell migration. J Biol Chem 276: 7327–7336.

    Article  CAS  Google Scholar 

  • Bowden ET, Barth M, Thomas D, Glazer RI, Mueller SC . (1999). An invasion-related complex of cortactin, paxillin and PKCmu associates with invadopodia at sites of extracellular matrix degradation. Oncogene 18: 4440–4449.

    Article  CAS  Google Scholar 

  • Bringuier PP, Tamimi Y, Schuuring E, Schalken J . (1996). Expression of cyclin D1 and EMS1 in bladder tumours: relationship with chromosome 11q13 amplification. Oncogene 12: 1747–1753.

    CAS  PubMed  Google Scholar 

  • Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y et al. (2004). Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303: 2011–2015.

    Article  CAS  Google Scholar 

  • Bryce NS, Clark ES, Leysath JL, Currie JD, Webb DJ, Weaver AM . (2005). Cortaction promotes cell motility by enhancing lamellipodial persistence. Curr Biol 15: 1276–1285.

    Article  CAS  Google Scholar 

  • Buday L, Downward J . (2007). Roles of cortactin in tumor pathogenesis. Biochim Biophys Acta 1775: 263–273.

    CAS  Google Scholar 

  • Campbell DH, Sutherland RL, Daly RJ . (1999). Signaling pathways and structural domains required for phosphorylation of EMS1/cortactin. Cancer Res 59: 5376–5385.

    CAS  PubMed  Google Scholar 

  • Cao H, Weller S, Orth JD, Chen J, Huang B, Chen JL et al. (2005). Actin and Arf1-dependent recruitment of a cortactin—dynamin complex to the Golgi regulates post-Golgi transport. Nat Cell Biol 7: 483–492.

    Article  CAS  Google Scholar 

  • Chen L, Fischle W, Verdin E, Greene WC . (2001). Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science 293: 1653–1657.

    Article  CAS  Google Scholar 

  • Cohen HY, Lavu S, Bitterman KJ, Hekking B, Imahiyerobo TA, Miller C et al. (2004). Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol Cell 13: 627–638.

    Article  CAS  Google Scholar 

  • Cress WD, Seto E . (2000). Histone deacetylases, transcriptional control, and cancer. J Cell Physiol 184: 1–16.

    Article  CAS  Google Scholar 

  • Daitoku H, Hatta M, Matsuzaki H, Aratani S, Ohshima T, Miyagishi M et al. (2004). Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. Proc Natl Acad Sci USA 101: 10042–10047.

    Article  CAS  Google Scholar 

  • Fulco M, Schiltz RL, Iezzi S, King MT, Zhao P, Kashiwaya Y et al. (2003). Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell 12: 51–62.

    Article  CAS  Google Scholar 

  • Glozak MA, Sengupta N, Zhang X, Seto E . (2005). Acetylation and deacetylation of non-histone proteins. Gene 363: 15–23.

    Article  CAS  Google Scholar 

  • Gregoretti IV, Lee YM, Goodson HV . (2004). Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 338: 17–31.

    Article  CAS  Google Scholar 

  • Grozinger CM, Schreiber SL . (2002). Deacetylase enzymes: biological functions and the use of small-molecule inhibitors. Chem Biol 9: 3–16.

    Article  CAS  Google Scholar 

  • Guarente L . (2005). Calorie restriction and SIR2 genes—towards a mechanism. Mech Ageing Dev 126: 923–928.

    Article  CAS  Google Scholar 

  • Hallows WC, Lee S, Denu JM . (2006). Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci USA 103: 10230–10235.

    Article  CAS  Google Scholar 

  • Head JA, Jiang D, Li M, Zorn LJ, Schaefer EM, Parsons JT et al. (2003). Cortactin tyrosine phosphorylation requires Rac1 activity and association with the cortical actin cytoskeleton. Mol Biol Cell 14: 3216–3229.

    Article  CAS  Google Scholar 

  • Huang C, Liu J, Haudenschild CC, Zhan X . (1998). The role of tyrosine phosphorylation of cortactin in the locomotion of endothelial cells. J Biol Chem 273: 25770–25776.

    Article  CAS  Google Scholar 

  • Huffman DM, Grizzle WE, Bamman MM, Kim JS, Eltoum IA, Elgavish A et al. (2007). SIRT1 is significantly elevated in mouse and human prostate cancer. Cancer Res 67: 6612–6618.

    Article  CAS  Google Scholar 

  • Ito A, Kawaguchi Y, Lai CH, Kovacs JJ, Higashimoto Y, Appella E et al. (2002). MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J 21: 6236–6245.

    Article  CAS  Google Scholar 

  • Iyer NG, Ozdag H, Caldas C . (2004). p300/CBP and cancer. Oncogene 23: 4225–4231.

    Article  CAS  Google Scholar 

  • Jin Q, Yan T, Ge X, Sun C, Shi X, Zhai Q . (2007). Cytoplasm-localized SIRT1 enhances apoptosis. J Cell Physiol 213: 88–97.

    Article  CAS  Google Scholar 

  • Kanner SB, Reynolds AB, Vines RR, Parsons JT . (1990). Monoclonal antibodies to individual tyrosine-phosphorylated protein substrates of oncogene-encoded tyrosine kinases. Proc Natl Acad Sci USA 87: 3328–3332.

    Article  CAS  Google Scholar 

  • Kessels MM, Qualmann B . (2005). Extending the court for cortactin: from the cortex to the Golgi. Nat Cell Biol 7: 448–449.

    Article  CAS  Google Scholar 

  • Krubasik D, Iyer NG, English WR, Ahmed AA, Vias M, Roskelley C et al. (2006). Absence of p300 induces cellular phenotypic changes characteristic of epithelial to mesenchyme transition. Br J Cancer 94: 1326–1332.

    Article  CAS  Google Scholar 

  • Langley E, Pearson M, Faretta M, Bauer UM, Frye RA, Minucci S et al. (2002). Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J 21: 2383–2396.

    Article  CAS  Google Scholar 

  • Leipe DD, Landsman D . (1997). Histone deacetylases, acetoin utilization proteins and acetylpolyamine amidohydrolases are members of an ancient protein superfamily. Nucleic Acids Res 25: 3693–3697.

    Article  CAS  Google Scholar 

  • Li Y, Tondravi M, Liu J, Smith E, Haudenschild CC, Kaczmarek M et al. (2001). Cortactin potentiates bone metastasis of breast cancer cells. Cancer Res 61: 6906–6911.

    CAS  Google Scholar 

  • Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A et al. (2001). Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107: 137–148.

    Article  CAS  Google Scholar 

  • Martin KH, Jeffery ED, Grigera PR, Shabanowitz J, Hunt DF, Parsons JT . (2006). Cortactin phosphorylation sites mapped by mass spectrometry. J Cell Sci 119: 2851–2853.

    Article  CAS  Google Scholar 

  • Martinez-Quiles N, Ho HY, Kirschner MW, Ramesh N, Geha RS . (2004). Erk/Src phosphorylation of cortactin acts as a switch on-switch off mechanism that controls its ability to activate N-WASP. Mol Cell Biol 24: 5269–5280.

    Article  CAS  Google Scholar 

  • Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I . (2005). Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 16: 4623–4635.

    Article  CAS  Google Scholar 

  • Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W et al. (2004). Mammalian SIRT1 represses forkhead transcription factors. Cell 116: 551–563.

    Article  CAS  Google Scholar 

  • Moynihan KA, Grimm AA, Plueger MM, Bernal-Mizrachi E, Ford E, Cras-Meneur C et al. (2005). Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab 2: 105–117.

    Article  CAS  Google Scholar 

  • North BJ, Marshall BL, Borra MT, Denu JM, Verdin E . (2003). The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell 11: 437–444.

    Article  CAS  Google Scholar 

  • Ohsawa S, Miura M . (2006). Caspase-mediated changes in Sir2alpha during apoptosis. FEBS Lett 580: 5875–5879.

    Article  CAS  Google Scholar 

  • Patel AM, Incognito LS, Schechter GL, Wasilenko WJ, Somers KD . (1996). Amplification and expression of EMS-1 (cortactin) in head and neck squamous cell carcinoma cell lines. Oncogene 12: 31–35.

    CAS  PubMed  Google Scholar 

  • Patel AS, Schechter GL, Wasilenko WJ, Somers KD . (1998). Overexpression of EMS1/cortactin in NIH3T3 fibroblasts causes increased cell motility and invasion in vitro. Oncogene 16: 3227–3232.

    Article  CAS  Google Scholar 

  • Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P . (2005). Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434: 113–118.

    Article  CAS  Google Scholar 

  • Rodrigo JP, Garcia LA, Ramos S, Lazo PS, Suarez C . (2000). EMS1 gene amplification correlates with poor prognosis in squamous cell carcinomas of the head and neck. Clin Cancer Res 6: 3177–3182.

    CAS  PubMed  Google Scholar 

  • Schuuring E, Verhoeven E, Litvinov S, Michalides RJ . (1993). The product of the EMS1 gene, amplified and overexpressed in human carcinomas, is homologous to a v-src substrate and is located in cell-substratum contact sites. Mol Cell Biol 13: 2891–2898.

    Article  CAS  Google Scholar 

  • Solomon JM, Pasupuleti R, Xu L, McDonagh T, Curtis R, DiStefano PS et al. (2006). Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage. Mol Cell Biol 26: 28–38.

    Article  CAS  Google Scholar 

  • Stünkel W, Peh BK, Tan YC, Nayagam VM, Wang X, Salto-Tellez M et al. (2007). Function of the SIRT1 protein deacetylase in cancer. Biotechnol J 11: 1360–1368.

    Article  Google Scholar 

  • Tanno M, Sakamoto J, Miura T, Shimamoto K, Horio Y . (2007). Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J Biol Chem 282: 6823–6832.

    Article  CAS  Google Scholar 

  • Timpson P, Lynch DK, Schramek D, Walker F, Daly RJ . (2005). Cortactin overexpression inhibits ligand-induced down-regulation of the epidermal growth factor receptor. Cancer Res 65: 3273–3280.

    Article  CAS  Google Scholar 

  • van der Horst A, Tertoolen LG, de Vries-Smits LM, Frye RA, Medema RH, Burgering BM . (2004). FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1). J Biol Chem 279: 28873–28879.

    Article  CAS  Google Scholar 

  • Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reinberg D . (2004). Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell 16: 93–105.

    Article  CAS  Google Scholar 

  • Weed SA, Karginov AV, Schafer DA, Weaver AM, Kinley AW, Cooper JA et al. (2000). Cortactin localization to sites of actin assembly in lamellipodia requires interactions with F-actin and the Arp2/3 complex. J Cell Biol 151: 29–40.

    Article  CAS  Google Scholar 

  • Weed SA, Parsons JT . (2001). Cortactin: coupling membrane dynamics to cortical actin assembly. Oncogene 20: 6418–6434.

    Article  CAS  Google Scholar 

  • Wolf G . (2006). Calorie restriction increases life span: a molecular mechanism. Nutr Rev 64: 89–92.

    Article  Google Scholar 

  • Wu H, Parsons JT . (1993). Cortactin, an 80/85-kilodalton pp60src substrate, is a filamentous actin-binding protein enriched in the cell cortex. J Cell Biol 120: 1417–1426.

    Article  CAS  Google Scholar 

  • Wu H, Reynolds AB, Kanner SB, Vines RR, Parsons JT . (1991). Identification and characterization of a novel cytoskeleton-associated pp60src substrate. Mol Cell Biol 11: 5113–5124.

    Article  CAS  Google Scholar 

  • Yuan BZ, Zhou X, Zimonjic DB, Durkin ME, Popescu NC . (2003). Amplification and overexpression of the EMS1 oncogene, a possible prognostic marker, in human hepatocellular carcinoma. J Mol Diagn 5: 48–53.

    Article  CAS  Google Scholar 

  • Zhang X, Yuan Z, Zhang Y, Yong S, Salas-Burgos A, Koomen J et al. (2007). HDAC6 modulates cell motility by altering the acetylation level of cortactin. Mol Cell 27: 197–213.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to Dr Edward Seto for sirtuins plasmids. We thank Dr Michael W McBurney for sir2α+/+ and sir2α−/− MEFs; Dr James A DeCaprio for p300+/+ and p300−/− MEFs; Dr Don F Cameron for microscope usage; Drs Srikumar Chellappan, Gloria Ferreira, Mike Yuan, Zheng Shen, Mei Sun and Hua Yang for helpful discussions; Ms Kathleen Merkler for critical reading of this manuscript and Dr Ulmesh Jinwal for technical assistance. We also thank the H Lee Moffitt Cancer Center Analytic Microscopy Core Facility for their technical support and H Lee Moffitt Cancer Center Tissue Procurement for breast and ovarian tissues. This work was supported partly by ‘Start-up’ funds from the USF College of Medicine and H Lee Moffitt Cancer Center, an USF New Researcher grant, a Marsha Rivkin Center Scientific Scholar award for ovarian cancer research and a Bankhead-Coley Biomedical Research Program New Investigator Research Grant to XZ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X Zhang.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Zhang, M., Dong, H. et al. Deacetylation of cortactin by SIRT1 promotes cell migration. Oncogene 28, 445–460 (2009). https://doi.org/10.1038/onc.2008.388

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.388

Keywords

This article is cited by

Search

Quick links