[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The PTEN–PI3K pathway: of feedbacks and cross-talks

Abstract

The tumor suppressor PTEN was originally identified as a negative regulator of the phosphoinositide 3-kinase (PI3K) signaling, a main regulator of cell growth, metabolism and survival. Yet this function of PTEN is extremely relevant for its tumor-suppressive ability, albeit the recent characterization of many PI3K-independent tumor-suppressive activities. PI3K-mediated PIP3 production leads to the activation of the canonical AKT-mTORC1 pathway. The implications of this signaling cascade in health and disease have been underscored by the high number of regulators within the pathway whose alterations give rise to different malignancies, including familiar syndromes, metabolic dysfunctions and cancer. Moreover, PI3K is tightly buffered at multiple levels by downstream components, which have turned this signaling pathway literally upside down. PI3K and its downstream components in turn cross-talk with a number of other pathways, thereby leading to a complex network of signals that may have dramatic consequences when perturbed. Here, we review the current status of the PTEN–PI3K signaling pathway with special emphasis on the most recent data on targets and regulation of the PTEN–PI3K axis. This provides novel provocative therapeutic implications based on the targeted modulation of PI3K-cross-talking signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Ahn Y, Hwang CY, Lee SR, Kwon KS, Lee C . (2008). Tumor suppressor PTEN mediates a negative regulation of E3 ubiquitin-protein ligase Nedd4. Biochem J 412: 331–338.

    CAS  PubMed  Google Scholar 

  • Albuquerque C, Breukel C, van der Luijt R, Fidalgo P, Lage P, Slors FJ et al. (2002). The ‘just-right’ signaling model: APC somatic mutations are selected based on a specific level of activation of the beta-catenin signaling cascade. Hum Mol Genet 11: 1549–1560.

    CAS  PubMed  Google Scholar 

  • Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB et al. (1997). Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7: 261–269.

    Article  CAS  PubMed  Google Scholar 

  • Almind K, Inoue G, Pedersen O, Kahn CR . (1996). A common amino acid polymorphism in insulin receptor substrate-1 causes impaired insulin signaling. Evidence from transfection studies. J Clin Invest 97: 2569–2575.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ashcroft M, Ludwig RL, Woods DB, Copeland TD, Weber HO, MacRae EJ et al. (2002). Phosphorylation of HDM2 by Akt. Oncogene 21: 1955–1962.

    CAS  PubMed  Google Scholar 

  • Backer JM . (2008). The regulation and function of class III PI3Ks: novel roles for Vps34. Biochem J 410: 1–17.

    CAS  PubMed  Google Scholar 

  • Bader AG, Kang S, Zhao L, Vogt PK . (2005). Oncogenic PI3K deregulates transcription and translation. Nat Rev Cancer 5: 921–929.

    CAS  PubMed  Google Scholar 

  • Bai X, Ma D, Liu A, Shen X, Wang QJ, Liu Y et al. (2007). Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38. Science 318: 977–980.

    CAS  PubMed  Google Scholar 

  • Bandyopadhyay GK, Yu JG, Ofrecio J, Olefsky JM . (2005). Increased p85/55/50 expression and decreased phosphotidylinositol 3-kinase activity in insulin-resistant human skeletal muscle. Diabetes 54: 2351–2359.

    CAS  PubMed  Google Scholar 

  • Barber DF, Alvarado-Kristensson M, Gonzalez-Garcia A, Pulido R, Carrera AC . (2006). PTEN regulation, a novel function for the p85 subunit of phosphoinositide 3-kinase. Sci STKE 2006: pe49.

    PubMed  Google Scholar 

  • Baselga J, Rothenberg ML, Tabernero J, Seoane J, Daly T, Cleverly A et al. (2008). TGF-beta signalling-related markers in cancer patients with bone metastasis. Biomarkers 13: 217–236.

    CAS  PubMed  Google Scholar 

  • Bayascas JR, Alessi DR . (2005). Regulation of Akt/PKB Ser473 phosphorylation. Mol Cell 18: 143–145.

    CAS  PubMed  Google Scholar 

  • Beck SE, Carethers JM . (2007). BMP suppresses PTEN expression via RAS/ERK signaling. Cancer Biol Ther 6: 1313–1317.

    CAS  PubMed  Google Scholar 

  • Berg CE, Lavan BE, Rondinone CM . (2002). Rapamycin partially prevents insulin resistance induced by chronic insulin treatment. Biochem Biophys Res Commun 293: 1021–1027.

    CAS  PubMed  Google Scholar 

  • Bernardi R, Guernah I, Jin D, Grisendi S, Alimonti A, Teruya-Feldstein J et al. (2006). PML inhibits HIF-1alpha translation and neoangiogenesis through repression of mTOR. Nature 442: 779–785.

    CAS  PubMed  Google Scholar 

  • Biggs III WH, Meisenhelder J, Hunter T, Cavenee WK, Arden KC . (1999). Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci USA 96: 7421–7426.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS et al. (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96: 857–868.

    CAS  PubMed  Google Scholar 

  • Burgering BM . (2008). A brief introduction to FOXOlogy. Oncogene 27: 2258–2262.

    CAS  PubMed  Google Scholar 

  • Cantley LC . (2002). The phosphoinositide 3-kinase pathway. Science 296: 1655–1657.

    CAS  PubMed  Google Scholar 

  • Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM et al. (2007). A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448: 439–444.

    CAS  PubMed  Google Scholar 

  • Carracedo A, Ma L, Teruya-Feldstein L, Rojo F, Salmena L, Alimonti A et al. (2008). Inhibition of mTORC1 leads to MAPK pathway activation through a P13K-dependent feedback loop in human cancer. J Clin Invest (in press).

  • Carracedo A, Salmena L, Pandolfi PP . (2008). SnapShot: PTEN signaling pathways. Cell 133: 550el.

    Google Scholar 

  • Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ et al. (1996). Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 84: 491–495.

    CAS  PubMed  Google Scholar 

  • Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M et al. (2005). Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436: 725–730.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cloughesy TF, Yoshimoto K, Nghiemphu P, Brown K, Dang J, Zhu S et al. (2008). Antitumor activity of rapamycin in a phase I trial for patients with recurrent PTEN-deficient glioblastoma. PLoS Med 5: e8.

    PubMed  PubMed Central  Google Scholar 

  • Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA . (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378: 785–789.

    CAS  PubMed  Google Scholar 

  • Culjkovic B, Tan K, Orolicki S, Amri A, Meloche S, Borden KL . (2008). The eIF4E RNA regulon promotes the Akt signaling pathway. J Cell Biol 181: 51–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  • D'Alfonso R, Marini MA, Frittitta L, Sorge R, Frontoni S, Porzio O et al. (2003). Polymorphisms of the insulin receptor substrate-2 in patients with type 2 diabetes. J Clin Endocrinol Metab 88: 317–322.

    CAS  PubMed  Google Scholar 

  • Dan HC, Sun M, Yang L, Feldman RI, Sui XM, Ou CC et al. (2002). Phosphatidylinositol 3-kinase/Akt pathway regulates tuberous sclerosis tumor suppressor complex by phosphorylation of tuberin. J Biol Chem 277: 35364–35370.

    CAS  PubMed  Google Scholar 

  • del Peso L, Gonzalez-Garcia M, Page C, Herrera R, Nunez G . (1997). Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278: 687–689.

    CAS  PubMed  Google Scholar 

  • Denley A, Kang S, Karst U, Vogt PK . (2008). Oncogenic signaling of class I PI3K isoforms. Oncogene 27: 2561–2574.

    CAS  PubMed  Google Scholar 

  • Denning G, Jean-Joseph B, Prince C, Durden DL, Vogt PK . (2007). A short N-terminal sequence of PTEN controls cytoplasmic localization and is required for suppression of cell growth. Oncogene 26: 3930–3940.

    CAS  PubMed  Google Scholar 

  • Di Cristofano A, Kotsi P, Peng YF, Cordon-Cardo C, Elkon KB, Pandolfi PP . (1999). Impaired Fas response and autoimmunity in Pten+/− mice. Science 285: 2122–2125.

    CAS  PubMed  Google Scholar 

  • Di Cristofano A, Pesce B, Cordon-Cardo C, Pandolfi PP . (1998). Pten is essential for embryonic development and tumour suppression. Nat Genet 19: 348–355.

    CAS  PubMed  Google Scholar 

  • Dorrello NV, Peschiaroli A, Guardavaccaro D, Colburn NH, Sherman NE, Pagano M . (2006). S6K1- and betaTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science 314: 467–471.

    Article  CAS  PubMed  Google Scholar 

  • Du K, Herzig S, Kulkarni RN, Montminy M . (2003). TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver. Science 300: 1574–1577.

    CAS  PubMed  Google Scholar 

  • Endersby R, Baker SJ . (2008). PTEN Signaling in Brain: Neuropathology and Tumorigenesis. Oncogene (in press).

    CAS  PubMed  Google Scholar 

  • Eng C . (2003). PTEN: one gene, many syndromes. Hum Mutat 22: 183–198.

    CAS  PubMed  Google Scholar 

  • Engelman JA, Luo J, Cantley LC . (2006). The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7: 606–619.

    CAS  PubMed  Google Scholar 

  • Esposito DL, Li Y, Vanni C, Mammarella S, Veschi S, Della Loggia F et al. (2003). A novel T608R missense mutation in insulin receptor substrate-1 identified in a subject with type 2 diabetes impairs metabolic insulin signaling. J Clin Endocrinol Metab 88: 1468–1475.

    CAS  PubMed  Google Scholar 

  • Faivre S, Kroemer G, Raymond E . (2006). Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov 5: 671–688.

    CAS  PubMed  Google Scholar 

  • Fivaz M, Bandara S, Inoue T, Meyer T . (2008). Robust neuronal symmetry breaking by Ras-triggered local positive feedback. Curr Biol 18: 44–50.

    CAS  PubMed  Google Scholar 

  • Fraser MM, Bayazitov IT, Zakharenko SS, Baker SJ . (2008). Phosphatase and tensin homolog, deleted on chromosome 10 deficiency in brain causes defects in synaptic structure, transmission and plasticity, and myelination abnormalities. Neuroscience 151: 476–488.

    CAS  PubMed  Google Scholar 

  • Fraser MM, Zhu X, Kwon CH, Uhlmann EJ, Gutmann DH, Baker SJ . (2004). Pten loss causes hypertrophy and increased proliferation of astrocytes in vivo. Cancer Res 64: 7773–7779.

    CAS  PubMed  Google Scholar 

  • Fujita N, Sato S, Katayama K, Tsuruo T . (2002). Akt-dependent phosphorylation of p27Kip1 promotes binding to 14-3-3 and cytoplasmic localization. J Biol Chem 277: 28706–28713.

    CAS  PubMed  Google Scholar 

  • Funamoto S, Meili R, Lee S, Parry L, Firtel RA . (2002). Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell 109: 611–623.

    CAS  PubMed  Google Scholar 

  • Gao T, Furnari F, Newton AC . (2005). PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell 18: 13–24.

    CAS  PubMed  Google Scholar 

  • Garami A, Zwartkruis FJ, Nobukuni T, Joaquin M, Roccio M, Stocker H et al. (2003). Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell 11: 1457–1466.

    CAS  PubMed  Google Scholar 

  • Garcia-Echeverria C, Sellers W . (2008). Drug discovery approaches to target the P13K/Akt pathway in cancer cells. Oncogene (in press).

  • Garlich JR, De P, Dey N, Su JD, Peng X, Miller A et al. (2008). A vascular targeted pan phosphoinositide 3-kinase inhibitor prodrug, SF1126, with antitumor and antiangiogenic activity. Cancer Res 68: 206–215.

    CAS  PubMed  Google Scholar 

  • George S, Rochford JJ, Wolfrum C, Gray SL, Schinner S, Wilson JC et al. (2004). A family with severe insulin resistance and diabetes due to a mutation in AKT2. Science 304: 1325–1328.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghilardi N, Ziegler S, Wiestner A, Stoffel R, Heim MH, Skoda RC . (1996). Defective STAT signaling by the leptin receptor in diabetic mice. Proc Natl Acad Sci USA 93: 6231–6235.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greene MW, Sakaue H, Wang L, Alessi DR, Roth RA . (2003). Modulation of insulin-stimulated degradation of human insulin receptor substrate-1 by serine 312 phosphorylation. J Biol Chem 278: 8199–8211.

    CAS  PubMed  Google Scholar 

  • Gu J, Tamura M, Yamada KM . (1998). Tumor suppressor PTEN inhibits integrin- and growth factor-mediated mitogen-activated protein (MAP) kinase signaling pathways. J Cell Biol 143: 1375–1383.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guan KL, Figueroa C, Brtva TR, Zhu T, Taylor J, Barber TD et al. (2000). Negative regulation of the serine/threonine kinase B-Raf by Akt. J Biol Chem 275: 27354–27359.

    CAS  PubMed  Google Scholar 

  • Guertin DA, Sabatini DM . (2007). Defining the role of mTOR in cancer. Cancer Cell 12: 9–22.

    CAS  PubMed  Google Scholar 

  • Gulati P, Gaspers LD, Dann SG, Joaquin M, Nobukuni T, Natt F et al. (2008). Amino acids activate mTOR complex 1 via Ca(2+)/CaM signaling to hVps34. Cell Metab 7: 456–465.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo S, Rena G, Cichy S, He X, Cohen P, Unterman T . (1999). Phosphorylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin-like growth factor-binding protein-1 promoter activity through a conserved insulin response sequence. J Biol Chem 274: 17184–17192.

    CAS  PubMed  Google Scholar 

  • Gupta S, Ramjaun AR, Haiko P, Wang Y, Warne PH, Nicke B et al. (2007). Binding of ras to phosphoinositide 3-kinase p110alpha is required for ras-driven tumorigenesis in mice. Cell 129: 957–968.

    CAS  PubMed  Google Scholar 

  • Han S, Ritzenthaler JD, Zheng Y, Roman J . (2008). PPAR{beta}/{delta}agonist stimulates human lung carcinoma cell growth through inhibition of PTEN expression: the involvement of PI3-K and NF-{kappa}B signals. Am J Physiol Lung Cell Mol Physio 294: L1238–L1249.

    CAS  Google Scholar 

  • Harrington LS, Findlay GM, Gray A, Tolkacheva T, Wigfield S, Rebholz H et al. (2004). The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biol 166: 213–223.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hartley D, Cooper GM . (2002). Role of mTOR in the degradation of IRS-1: regulation of PP2A activity. J Cell Biochem 85: 304–314.

    CAS  PubMed  Google Scholar 

  • Haruta T, Uno T, Kawahara J, Takano A, Egawa K, Sharma PM et al. (2000). A rapamycin-sensitive pathway down-regulates insulin signaling via phosphorylation and proteasomal degradation of insulin receptor substrate-1. Mol Endocrinol 14: 783–794.

    CAS  PubMed  Google Scholar 

  • Harvey RD, Lonial S . (2007). PI3 kinase/AKT pathway as a therapeutic target in multiple myeloma. Future Oncol 3: 639–647.

    CAS  PubMed  Google Scholar 

  • Herman PK, Emr SD . (1990). Characterization of VPS34, a gene required for vacuolar protein sorting and vacuole segregation in Saccharomyces cerevisiae. Mol Cell Biol 10: 6742–6754.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hettinger K, Vikhanskaya F, Poh MK, Lee MK, de Belle I, Zhang JT et al. (2007). c-Jun promotes cellular survival by suppression of PTEN. Cell Death Differ 14: 218–229.

    CAS  PubMed  Google Scholar 

  • Huang J, Dibble CC, Matsuzaki M, Manning BD . (2008). The TSC1–TSC2 complex is required for proper activation of mTOR complex 2. Mol Cell Biol 12: 4104–4115.

    Google Scholar 

  • Im E, von Lintig FC, Chen J, Zhuang S, Qui W, Chowdhury S et al. (2002). Rheb is in a high activation state and inhibits B-Raf kinase in mammalian cells. Oncogene 21: 6356–6365.

    CAS  PubMed  Google Scholar 

  • Inoki K, Li Y, Xu T, Guan KL . (2003). Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 17: 1829–1834.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inoki K, Li Y, Zhu T, Wu J, Guan KL . (2002). TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4: 648–657.

    CAS  PubMed  Google Scholar 

  • Jakobsen SN, Hardie DG, Morrice N, Tornqvist HE . (2001). 5′-AMP-activated protein kinase phosphorylates IRS-1 on Ser-789 in mouse C2C12 myotubes in response to 5-aminoimidazole-4-carboxamide riboside. J Biol Chem 276: 46912–46916.

    CAS  PubMed  Google Scholar 

  • Jozwiak J, Jozwiak S, Wlodarski P . (2008). Possible mechanisms of disease development in tuberous sclerosis. Lancet Oncol 9: 73–79.

    CAS  PubMed  Google Scholar 

  • Karbowniczek M, Cash T, Cheung M, Robertson GP, Astrinidis A, Henske EP . (2004). Regulation of B-Raf kinase activity by tuberin and Rheb is mammalian target of rapamycin (mTOR)-independent. J Biol Chem 279: 29930–29937.

    CAS  PubMed  Google Scholar 

  • Karbowniczek M, Robertson GP, Henske EP . (2006). Rheb inhibits C-raf activity and B-raf/C-raf heterodimerization. J Biol Chem 281: 25447–25456.

    CAS  PubMed  Google Scholar 

  • Katso R, Okkenhaug K, Ahmadi K, White S, Timms J, Waterfield MD . (2001). Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol 17: 615–675.

    CAS  PubMed  Google Scholar 

  • Kawanishi M, Tamori Y, Masugi J, Mori H, Ito C, Hansen T et al. (1997). Prevalence of a polymorphism of the phosphatidylinositol 3-kinase p85 alpha regulatory subunit (codon 326 Met → Ile) in Japanese NIDDM patients. Diabetes Care 20: 1043.

    CAS  PubMed  Google Scholar 

  • Kim MS, Jeong EG, Yoo NJ, Lee SH . (2008). Mutational analysis of oncogenic AKT E17K mutation in common solid cancers and acute leukaemias. Br J Cancer 118: 1700–1711.

    CAS  Google Scholar 

  • Kim S, Domon-Dell C, Kang J, Chung DH, Freund JN, Evers BM . (2004). Down-regulation of the tumor suppressor PTEN by the tumor necrosis factor-alpha/nuclear factor-kappaB (NF-kappaB)-inducing kinase/NF-kappaB pathway is linked to a default IkappaB-alpha autoregulatory loop. J Biol Chem 279: 4285–4291.

    CAS  PubMed  Google Scholar 

  • Knudson AG . (1996). Hereditary cancer: two hits revisited. J Cancer Res Clin Oncol 122: 135–140.

    CAS  PubMed  Google Scholar 

  • Kops GJ, de Ruiter ND, De Vries-Smits AM, Powell DR, Bos JL, Burgering BM . (1999). Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 398: 630–634.

    CAS  PubMed  Google Scholar 

  • Kovacina KS, Park GY, Bae SS, Guzzetta AW, Schaefer E, Birnbaum MJ et al. (2003). Identification of a proline-rich Akt substrate as a 14-3-3 binding partner. J Biol Chem 278: 10189–10194.

    CAS  PubMed  Google Scholar 

  • Kurlawalla-Martinez C, Stiles B, Wang Y, Devaskar SU, Kahn BB, Wu H . (2005). Insulin hypersensitivity and resistance to streptozotocin-induced diabetes in mice lacking PTEN in adipose tissue. Mol Cell Biol 25: 2498–2510.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lahlou H, Saint-Laurent N, Esteve JP, Eychene A, Pradayrol L, Pyronnet S et al. (2003). sst2 Somatostatin receptor inhibits cell proliferation through Ras-, Rap1-, and B-Raf-dependent ERK2 activation. J Biol Chem 278: 39356–39371.

    CAS  PubMed  Google Scholar 

  • Lee JT, Steelman LS, Chappell WH, McCubrey JA . (2008). Akt inactivates ERK causing decreased response to chemotherapeutic drugs in advanced CaP cells. Cell Cycle 7: 631–636.

    CAS  PubMed  Google Scholar 

  • Li DM, Sun H . (1997). TEP1, encoded by a candidate tumor suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor beta. Cancer Res 57: 2124–2129.

    CAS  PubMed  Google Scholar 

  • Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI et al. (1997). PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275: 1943–1947.

    CAS  PubMed  Google Scholar 

  • Lindsay Y, McCoull D, Davidson L, Leslie NR, Fairservice A, Gray A et al. (2006). Localization of agonist-sensitive PtdIns(3,4,5)P3 reveals a nuclear pool that is insensitive to PTEN expression. J Cell Sci 119: 5160–5168.

    CAS  PubMed  Google Scholar 

  • Liu JL, Mao Z, LaFortune TA, Alonso MM, Gallick GE, Fueyo J et al. (2007). Cell cycle-dependent nuclear export of phosphatase and tensin homologue tumor suppressor is regulated by the phosphoinositide-3-kinase signaling cascade. Cancer Res 67: 11054–11063.

    CAS  PubMed  Google Scholar 

  • Lopiccolo J, Blumenthal GM, Bernstein WB, Dennis PA . (2007). Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations. Drug Resist Updat 11: 32–50.

    PubMed  PubMed Central  Google Scholar 

  • Luo J, Field SJ, Lee JY, Engelman JA, Cantley LC . (2005a). The p85 regulatory subunit of phosphoinositide 3-kinase down-regulates IRS-1 signaling via the formation of a sequestration complex. J Cell Biol 170: 455–464.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo J, Manning BD, Cantley LC . (2003). Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell 4: 257–262.

    CAS  PubMed  Google Scholar 

  • Luo J, Sobkiw CL, Logsdon NM, Watt JM, Signoretti S, O'Connell F et al. (2005b). Modulation of epithelial neoplasia and lymphoid hyperplasia in PTEN+/− mice by the p85 regulatory subunits of phosphoinositide 3-kinase. Proc Natl Acad Sci USA 102: 10238–10243.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP . (2005a). Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121: 179–193.

    CAS  PubMed  Google Scholar 

  • Ma L, Teruya-Feldstein J, Behrendt N, Chen Z, Noda T, Hino O et al. (2005b). Genetic analysis of Pten and Tsc2 functional interactions in the mouse reveals asymmetrical haploinsufficiency in tumor suppression. Genes Dev 19: 1779–1786.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma L, Teruya-Feldstein J, Bonner P, Bernardi R, Franz DN, Witte D et al. (2007). Identification of S664 TSC2 phosphorylation as a marker for extracellular signal-regulated kinase mediated mTOR activation in tuberous sclerosis and human cancer. Cancer Res 67: 7106–7112.

    CAS  PubMed  Google Scholar 

  • Mabuchi S, Ohmichi M, Kimura A, Hisamoto K, Hayakawa J, Nishio Y et al. (2002). Inhibition of phosphorylation of BAD and Raf-1 by Akt sensitizes human ovarian cancer cells to paclitaxel. J Biol Chem 277: 33490–33500.

    CAS  PubMed  Google Scholar 

  • Maehama T, Dixon JE . (1998). The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273: 13375–13378.

    CAS  PubMed  Google Scholar 

  • Majumder PK, Febbo PG, Bikoff R, Berger R, Xue Q, McMahon LM et al. (2004). mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat Med 10: 594–601.

    CAS  PubMed  Google Scholar 

  • Majumder PK, Yeh JJ, George DJ, Febbo PG, Kum J, Xue Q et al. (2003). Prostate intraepithelial neoplasia induced by prostate restricted Akt activation: the MPAKT model. Proc Natl Acad Sci USA 100: 7841–7846.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malanga D, Scrima M, De Marco C, Fabiani F, De Rosa N, De Gisi S et al. (2008). Activating E17K mutation in the gene encoding the protein kinase AKT1 in a subset of squamous cell carcinoma of the lung. Cell Cycle 7: 665–669.

    CAS  PubMed  Google Scholar 

  • Manning BD . (2004). Balancing Akt with S6K: implications for both metabolic diseases and tumorigenesis. J Cell Biol 167: 399–403.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manning BD, Cantley LC . (2007). AKT/PKB signaling: navigating downstream. Cell 129: 1261–1274.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manning BD, Logsdon MN, Lipovsky AI, Abbott D, Kwiatkowski DJ, Cantley LC . (2005). Feedback inhibition of Akt signaling limits the growth of tumors lacking Tsc2. Genes Dev 19: 1773–1778.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mayo LD, Donner DB . (2001). A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci USA 98: 11598–11603.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moelling K, Schad K, Bosse M, Zimmermann S, Schweneker M . (2002). Regulation of Raf-Akt cross-talk. J Biol Chem 277: 31099–31106.

    CAS  PubMed  Google Scholar 

  • Nakae J, Park BC, Accili D . (1999). Insulin stimulates phosphorylation of the forkhead transcription factor FKHR on serine 253 through a wortmannin-sensitive pathway. J Biol Chem 274: 15982–15985.

    CAS  PubMed  Google Scholar 

  • Ni YG, Wang N, Cao DJ, Sachan N, Morris DJ, Gerard RD et al. (2007). FoxO transcription factors activate Akt and attenuate insulin signaling in heart by inhibiting protein phosphatases. Proc Natl Acad Sci USA 104: 20517–20522.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nobukuni T, Joaquin M, Roccio M, Dann SG, Kim SY, Gulati P et al. (2005). Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci USA 102: 14238–14243.

    CAS  PubMed  PubMed Central  Google Scholar 

  • O'Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D et al. (2006). mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 66: 1500–1508.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ozcan U, Ozcan L, Yilmaz E, Duvel K, Sahin M, Manning BD et al. (2008). Loss of the tuberous sclerosis complex tumor suppressors triggers the unfolded protein response to regulate insulin signaling and apoptosis. Mol Cell 29: 541–551.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ozes ON, Akca H, Mayo LD, Gustin JA, Maehama T, Dixon JE et al. (2001). A phosphatidylinositol 3-kinase/Akt/mTOR pathway mediates and PTEN antagonizes tumor necrosis factor inhibition of insulin signaling through insulin receptor substrate-1. Proc Natl Acad Sci USA 98: 4640–4645.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palomero T, Sulis ML, Cortina M, Real PJ, Barnes K, Ciofani M et al. (2007). Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med 13: 1203–1210.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Papakonstanti EA, Ridley AJ, Vanhaesebroeck B . (2007). The p110delta isoform of PI 3-kinase negatively controls RhoA and PTEN. EMBO J 26: 3050–3061.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pirola L, Bonnafous S, Johnston AM, Chaussade C, Portis F, Van Obberghen E . (2003). Phosphoinositide 3-kinase-mediated reduction of insulin receptor substrate-1/2 protein expression via different mechanisms contributes to the insulin-induced desensitization of its signaling pathways in L6 muscle cells. J Biol Chem 278 15641–15651.

    CAS  PubMed  Google Scholar 

  • Potter CJ, Pedraza LG, Xu T . (2002). Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol 4: 658–665.

    CAS  PubMed  Google Scholar 

  • Radimerski T, Montagne J, Hemmings-Mieszczak M, Thomas G . (2002). Lethality of Drosophila lacking TSC tumor suppressor function rescued by reducing dS6K signaling. Genes Dev 16: 2627–2632.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramjaun AR, Downward J . (2007). Ras and phosphoinositide 3-kinase: partners in development and tumorigenesis. Cell Cycle 6: 2902–2905.

    CAS  PubMed  Google Scholar 

  • Raught B, Peiretti F, Gingras AC, Livingstone M, Shahbazian D, Mayeur GL et al. (2004). Phosphorylation of eukaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. EMBO J 23: 1761–1769.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rena G, Guo S, Cichy SC, Unterman TG, Cohen P . (1999). Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B. J Biol Chem 274: 17179–17183.

    CAS  PubMed  Google Scholar 

  • Reusch HP, Zimmermann S, Schaefer M, Paul M, Moelling K . (2001). Regulation of Raf by Akt controls growth and differentiation in vascular smooth muscle cells. J Biol Chem 276: 33630–33637.

    CAS  PubMed  Google Scholar 

  • Rodriguez-Viciana P, Warne PH, Khwaja A, Marte BM, Pappin D, Das P et al. (1997). Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell 89: 457–467.

    CAS  PubMed  Google Scholar 

  • Rommel C, Clarke BA, Zimmermann S, Nunez L, Rossman R, Reid K et al. (1999). Differentiation stage-specific inhibition of the Raf-MEK-ERK pathway by Akt. Science 286: 1738–1741.

    CAS  PubMed  Google Scholar 

  • Roux PP, Ballif BA, Anjum R, Gygi SP, Blenis J . (2004). Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc Natl Acad Sci USA 101: 13489–13494.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roux PP, Shahbazian D, Vu H, Holz MK, Cohen MS, Taunton J et al. (2007). RAS/ERK signaling promotes site-specific ribosomal protein S6 phosphorylation via RSK and stimulates cap-dependent translation. J Biol Chem 282: 14056–14064.

    CAS  PubMed  Google Scholar 

  • Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH . (1994). RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78: 35–43.

    CAS  PubMed  Google Scholar 

  • Salmena L, Carracedo A, Pandolfi PP . (2008). Tenets of PTEN tumor suppression. Cell 133: 403–414.

    CAS  PubMed  Google Scholar 

  • Sampaio C, Dance M, Montagner A, Edouard T, Malet N, Perret B et al. (2008). Signal strength dictates phosphoinositide 3-kinase contribution to Ras/extracellular signal-regulated kinase 1 and 2 activation via differential Gab1/Shp2 recruitment: consequences for resistance to epidermal growth factor receptor inhibition. Mol Cell Biol 28: 587–600.

    CAS  PubMed  Google Scholar 

  • Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S et al. (2004). High frequency of mutations of the PIK3CA gene in human cancers. Science 304: 554.

    CAS  PubMed  Google Scholar 

  • Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E et al. (2007). PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 25: 903–915.

    CAS  PubMed  Google Scholar 

  • Sano H, Kane S, Sano E, Miinea CP, Asara JM, Lane WS et al. (2003). Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation. J Biol Chem 278: 14599–14602.

    CAS  PubMed  Google Scholar 

  • Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H et al. (2004). Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14: 1296–1302.

    CAS  PubMed  Google Scholar 

  • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM . (2005). Phosphorylation and regulation of Akt/PKB by the rictor–mTOR complex. Science 307: 1098–1101.

    CAS  PubMed  Google Scholar 

  • Sasaki AT, Chun C, Takeda K, Firtel RA . (2004). Localized Ras signaling at the leading edge regulates PI3K, cell polarity, and directional cell movement. J Cell Biol 167: 505–518.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki AT, Janetopoulos C, Lee S, Charest PG, Takeda K, Sundheimer LW et al. (2007). G protein-independent Ras/PI3K/F-actin circuit regulates basic cell motility. J Cell Biol 178: 185–191.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sato S, Fujita N, Tsuruo T . (2004). Involvement of 3-phosphoinositide-dependent protein kinase-1 in the MEK/MAPK signal transduction pathway. J Biol Chem 279: 33759–33767.

    CAS  PubMed  Google Scholar 

  • Schafer B, Gschwind A, Ullrich A . (2004). Multiple G-protein-coupled receptor signals converge on the epidermal growth factor receptor to promote migration and invasion. Oncogene 23: 991–999.

    PubMed  Google Scholar 

  • Schwindinger WF, Robishaw JD . (2001). Heterotrimeric G-protein betagamma-dimers in growth and differentiation. Oncogene 20: 1653–1660.

    CAS  PubMed  Google Scholar 

  • Shah OJ, Wang Z, Hunter T . (2004). Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol 14: 1650–1656.

    CAS  PubMed  Google Scholar 

  • Shahbazian D, Roux PP, Mieulet V, Cohen MS, Raught B, Taunton J et al. (2006). The mTOR/PI3K and MAPK pathways converge on eIF4B to control its phosphorylation and activity. EMBO J 25: 2781–2791.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T et al. (1998). Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95: 29–39.

    CAS  PubMed  Google Scholar 

  • Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH et al. (1997). Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 15: 356–362.

    CAS  PubMed  Google Scholar 

  • Stiles B, Wang Y, Stahl A, Bassilian S, Lee WP, Kim YJ et al. (2004). Liver-specific deletion of negative regulator Pten results in fatty liver and insulin hypersensitivity [corrected]. Proc Natl Acad Sci USA 101: 2082–2087.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun SY, Rosenberg LM, Wang X, Zhou Z, Yue P, Fu H et al. (2005). Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res 65: 7052–7058.

    CAS  PubMed  Google Scholar 

  • Takaishi H, Konishi H, Matsuzaki H, Ono Y, Shirai Y, Saito N et al. (1999). Regulation of nuclear translocation of forkhead transcription factor AFX by protein kinase B. Proc Natl Acad Sci USA 96: 11836–11841.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamburini J, Chapuis N, Bardet V, Park S, Sujobert P, Willems L et al. (2008). Mammalian target of rapamycin (mTOR) inhibition activates phosphatidylinositol 3-kinase/Akt by up-regulating insulin-like growth factor-1 receptor signaling in acute myeloid leukemia: rationale for therapeutic inhibition of both pathways. Blood 111: 379–382.

    CAS  PubMed  Google Scholar 

  • Tang ED, Nunez G, Barr FG, Guan KL . (1999). Negative regulation of the forkhead transcription factor FKHR by Akt. J Biol Chem 274: 16741–16746.

    CAS  PubMed  Google Scholar 

  • Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J . (2003). Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol 13: 1259–1268.

    CAS  PubMed  Google Scholar 

  • Torres J, Pulido R . (2001). The tumor suppressor PTEN is phosphorylated by the protein kinase CK2 at its C terminus. Implications for PTEN stability to proteasome-mediated degradation. J Biol Chem 276: 993–998.

    CAS  PubMed  Google Scholar 

  • Tremblay F, Brule S, Hee Um S, Li Y, Masuda K, Roden M et al. (2007). Identification of IRS-1 Ser-1101 as a target of S6K1 in nutrient- and obesity-induced insulin resistance. Proc Natl Acad Sci USA 104: 14056–14061.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tremblay F, Marette A . (2001). Amino acid and insulin signaling via the mTOR/p70 S6 kinase pathway. A negative feedback mechanism leading to insulin resistance in skeletal muscle cells. J Biol Chem 276: 38052–38060.

    CAS  PubMed  Google Scholar 

  • Trotman LC, Alimonti A, Scaglioni PP, Koutcher JA, Cordon-Cardo C, Pandolfi PP . (2006). Identification of a tumour suppressor network opposing nuclear Akt function. Nature 441: 523–527.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trotman LC, Wang X, Alimonti A, Chen Z, Teruya-Feldstein J, Yang H et al. (2007). Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell 128: 141–156.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tzatsos A, Kandror KV . (2006). Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation. Mol Cell Biol 26: 63–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH . (2007). Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 9: 316–323.

    CAS  PubMed  Google Scholar 

  • Vasudevan KM, Burikhanov R, Goswami A, Rangnekar VM . (2007). Suppression of PTEN expression is essential for antiapoptosis and cellular transformation by oncogenic Ras. Cancer Res 67: 10343–10350.

    CAS  PubMed  Google Scholar 

  • Vasudevan KM, Gurumurthy S, Rangnekar VM . (2004). Suppression of PTEN expression by NF-kappa B prevents apoptosis. Mol Cell Biol 24: 1007–1021.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vezina C, Kudelski A, Sehgal SN . (1975). Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo) 28: 721–726.

    CAS  Google Scholar 

  • Vivanco I, Palaskas N, Tran C, Finn SP, Getz G, Kennedy NJ et al. (2007). Identification of the JNK signaling pathway as a functional target of the tumor suppressor PTEN. Cancer Cell 11: 555–569.

    CAS  PubMed  Google Scholar 

  • Vivanco I, Sawyers CL . (2002). The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer 2: 489–501.

    CAS  PubMed  Google Scholar 

  • Walker SM, Leslie NR, Perera NM, Batty IH, Downes CP . (2004). The tumour-suppressor function of PTEN requires an N-terminal lipid-binding motif. Biochem J 379: 301–307.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wan X, Harkavy B, Shen N, Grohar P, Helman LJ . (2007). Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene 26: 1932–1940.

    CAS  PubMed  Google Scholar 

  • Wang Q, Zhou Y, Wang X, Evers BM . (2006). Glycogen synthase kinase-3 is a negative regulator of extracellular signal-regulated kinase. Oncogene 25: 43–50.

    PubMed  PubMed Central  Google Scholar 

  • Wang X, Li W, Williams M, Terada N, Alessi DR, Proud CG . (2001). Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase. EMBO J 20: 4370–4379.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Trotman LC, Koppie T, Alimonti A, Chen Z, Gao Z et al. (2007). NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN. Cell 128: 129–139.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weinstein IB, Joe A . (2008). Oncogene addiction. Cancer Res 68: 3077–3080. (discussion 3080)

    CAS  PubMed  Google Scholar 

  • Welch HC, Coadwell WJ, Stephens LR, Hawkins PT . (2003). Phosphoinositide 3-kinase-dependent activation of Rac. FEBS Lett 546: 93–97.

    CAS  PubMed  Google Scholar 

  • Wells V, Downward J, Mallucci L . (2007). Functional inhibition of PI3K by the betaGBP molecule suppresses Ras-MAPK signalling to block cell proliferation. Oncogene 26: 7709–7714.

    CAS  PubMed  Google Scholar 

  • Wennstrom S, Downward J . (1999). Role of phosphoinositide 3-kinase in activation of ras and mitogen-activated protein kinase by epidermal growth factor. Mol Cell Biol 19: 4279–4288.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wijesekara N, Konrad D, Eweida M, Jefferies C, Liadis N, Giacca A et al. (2005). Muscle-specific Pten deletion protects against insulin resistance and diabetes. Mol Cell Biol 25: 1135–1145.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu DN, Pei DS, Wang Q, Zhang GY . (2006). Down-regulation of PTEN by sodium orthovanadate inhibits ASK1 activation via PI3-K/Akt during cerebral ischemia in rat hippocampus. Neurosci Lett 404: 98–102.

    CAS  PubMed  Google Scholar 

  • Wu W, Wang X, Zhang W, Reed W, Samet JM, Whang YE et al. (2003). Zinc-induced PTEN protein degradation through the proteasome pathway in human airway epithelial cells. J Biol Chem 278: 28258–28263.

    CAS  PubMed  Google Scholar 

  • Xia D, Srinivas H, Ahn YH, Sethi G, Sheng X, Yung WK et al. (2007). Mitogen-activated protein kinase kinase-4 promotes cell survival by decreasing PTEN expression through an NF kappa B-dependent pathway. J Biol Chem 282: 3507–3519.

    CAS  PubMed  Google Scholar 

  • Yart A, Chap H, Raynal P . (2002). Phosphoinositide 3-kinases in lysophosphatidic acid signaling: regulation and cross-talk with the Ras/mitogen-activated protein kinase pathway. Biochim Biophys Acta 1582: 107–111.

    CAS  PubMed  Google Scholar 

  • Yart A, Laffargue M, Mayeux P, Chretien S, Peres C, Tonks N et al. (2001). A critical role for phosphoinositide 3-kinase upstream of Gab1 and SHP2 in the activation of ras and mitogen-activated protein kinases by epidermal growth factor. J Biol Chem 276: 8856–8864.

    CAS  PubMed  Google Scholar 

  • Yee WM, Worley PF . (1997). Rheb interacts with Raf-1 kinase and may function to integrate growth factor- and protein kinase A-dependent signals. Mol Cell Biol 17: 921–933.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yilmaz OH, Valdez R, Theisen BK, Guo W, Ferguson DO, Wu H et al. (2006). Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441: 475–482.

    CAS  PubMed  Google Scholar 

  • Yuan TL, Cantley LC . (2008). P13K pathway alterations in cancer: variations on a theme. Oncogene (in press).

  • Yuan ZQ, Feldman RI, Sussman GE, Coppola D, Nicosia SV, Cheng JQ . (2003). AKT2 inhibition of cisplatin-induced JNK/p38 and Bax activation by phosphorylation of ASK1: implication of AKT2 in chemoresistance. J Biol Chem 278: 23432–23440.

    CAS  PubMed  Google Scholar 

  • Zhande R, Mitchell JJ, Wu J, Sun XJ . (2002). Molecular mechanism of insulin-induced degradation of insulin receptor substrate 1. Mol Cell Biol 22: 1016–1026.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang BH, Tang ED, Zhu T, Greenberg ME, Vojtek AB, Guan KL . (2001). Serum- and glucocorticoid-inducible kinase SGK phosphorylates and negatively regulates B-Raf. J Biol Chem 276: 31620–31626.

    CAS  PubMed  Google Scholar 

  • Zhang H, Bajraszewski N, Wu E, Wang H, Moseman AP, Dabora SL et al. (2007). PDGFRs are critical for PI3K/Akt activation and negatively regulated by mTOR. J Clin Invest 117: 730–738.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Cicchetti G, Onda H, Koon HB, Asrican K, Bajraszewski N et al. (2003a). Loss of Tsc1/Tsc2 activates mTOR and disrupts PI3K-Akt signaling through downregulation of PDGFR. J Clin Invest 112: 1223–1233.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang HH, Lipovsky AI, Dibble CC, Sahin M, Manning BD . (2006a). S6K1 regulates GSK3 under conditions of mTOR-dependent feedback inhibition of Akt. Mol Cell 24: 185–197.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Grindley JC, Yin T, Jayasinghe S, He XC, Ross JT et al. (2006b). PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 441: 518–522.

    CAS  PubMed  Google Scholar 

  • Zhang R, Luo D, Miao R, Bai L, Ge Q, Sessa WC et al. (2005). Hsp90-Akt phosphorylates ASK1 and inhibits ASK1-mediated apoptosis. Oncogene 24: 3954–3963.

    CAS  PubMed  Google Scholar 

  • Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA, Pan D . (2003b). Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol 5: 578–581.

    CAS  PubMed  Google Scholar 

  • Zhao L, Vogt PK . (2008). Class I P13K in oncogenic cellular transformation. Oncogene (in press).

  • Zimmermann S, Moelling K . (1999). Phosphorylation and regulation of Raf by Akt (protein kinase B). Science 286: 1741–1744.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all members of the Pandolfi lab who contributed to these ideas. In particular, we are grateful to L Salmena and MS Song for insightful discussions. The work of PPP was supported by the US National Cancer Institute, and AC was supported by a European Molecular Biology Organization Long-Term Fellowship Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P P Pandolfi.

Additional information

Competing financial interests statement

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carracedo, A., Pandolfi, P. The PTEN–PI3K pathway: of feedbacks and cross-talks. Oncogene 27, 5527–5541 (2008). https://doi.org/10.1038/onc.2008.247

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.247

Keywords

This article is cited by

Search

Quick links