[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Advances in physical activity monitoring and lifestyle interventions in obesity: a review

Abstract

Obesity represents a strong risk factor for developing chronic diseases. Strategies for disease prevention often promote lifestyle changes encouraging participation in physical activity. However, determining what amount of physical activity is necessary for achieving specific health benefits has been hampered by the lack of accurate instruments for monitoring physical activity and the related physiological outcomes. This review aims at presenting recent advances in activity-monitoring technology and their application to support interventions for health promotion. Activity monitors have evolved from step counters and measuring devices of physical activity duration and intensity to more advanced systems providing quantitative and qualitative information on the individuals’ activity behavior. Correspondingly, methods to predict activity-related energy expenditure using bodily acceleration and subjects characteristics have advanced from linear regression to innovative algorithms capable of determining physical activity types and the related metabolic costs. These novel techniques can monitor modes of sedentary behavior as well as the engagement in specific activity types that helps to evaluate the effectiveness of lifestyle interventions. In conclusion, advances in activity monitoring have the potential to support the design of response-dependent physical activity recommendations that are needed to generate effective and personalized lifestyle interventions for health promotion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Flegal KM, Carroll MD, Ogden CL, Curtin LR . Prevalence and trends in obesity among US adults, 1999–2008. JAMA 2010; 303: 235–241.

    CAS  PubMed  Google Scholar 

  2. Malnick SDH, Knobler H . The medical complications of obesity. QJM 2006; 99: 565–579.

    CAS  PubMed  Google Scholar 

  3. Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, Franklin BA et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc 2007; 39: 1423–1434.

    Article  PubMed  Google Scholar 

  4. Caspersen CJ, Christenson GM, Pollard RA . Status of the 1990 physical fitness and exercise objectives--evidence from NHIS 1985. Public Health Rep 1986; 101: 587–592.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Grant M . A short history of classical civilization. In: Herodotus, The Persian War, vol. VIII. Weidenfeld and Nicolson: London, UK, 1991, p 26.

    Google Scholar 

  6. Kriska AM, Saremi A, Hanson RL, Bennett PH, Kobes S, Williams DE et al. Physical activity, obesity, and the incidence of type 2 diabetes in a high-risk population. Am J Epidemiol 2003; 158: 669–675.

    PubMed  Google Scholar 

  7. Blair SN, Brodney S . Effects of physical inactivity and obesity on morbidity and mortality: current evidence and research issues. Med Sci Sports Exerc 1999; 31: S646–S662.

    CAS  PubMed  Google Scholar 

  8. Fang J, Wylie-Rosett J, Cohen HW, Kaplan RC, Alderman MH . Exercise, body mass index, caloric intake, and cardiovascular mortality. Am J Prev Med 2003; 25: 283–289.

    PubMed  Google Scholar 

  9. Neville CE, Murray LJ, Boreham CA, Gallagher AM, Twisk J, Robson PJ et al. Relationship between physical activity and bone mineral status in young adults: the Northern Ireland Young Hearts Project. Bone 2002; 30: 792–798.

    CAS  PubMed  Google Scholar 

  10. Gotay CC . Behavior and cancer prevention. J Clin Oncol 2005; 23: 301–310.

    PubMed  Google Scholar 

  11. Westerterp KR . Physical activity, food intake, and body weight regulation: insights from doubly labeled water studies. Nutr Rev 2010; 68: 148–154.

    PubMed  Google Scholar 

  12. Tudor-Locke C, Brashear M, Johnson W, Katzmarzyk P . Accelerometer profiles of physical activity and inactivity in normal weight, overweight, and obese US men and women. Int J Behav Nutr Phys Act 2010; 7: 60.

    PubMed  PubMed Central  Google Scholar 

  13. Ekelund U, Aman J, Yngve A, Renman C, Westerterp K, Sjostrom M . Physical activity but not energy expenditure is reduced in obese adolescents: a case-control study. Am J Clin Nutr 2002; 76: 935–941.

    CAS  PubMed  Google Scholar 

  14. Levine JA, Lanningham-Foster LM, McCrady SK, Krizan AC, Olson LR, Kane PH et al. Interindividual variation in posture allocation: possible role in human obesity. Science 2005; 307: 584–586.

    CAS  PubMed  Google Scholar 

  15. Chong PK, Jung RT, Rennie MJ, Scrimgeour CM . Energy expenditure in lean and obese diabetic patients using the doubly labelled water method. Diabet Med 1993; 10: 729–735.

    CAS  PubMed  Google Scholar 

  16. Johannsen DL, Welk GJ, Sharp RL, Flakoll PJ . Differences in daily energy expenditure in lean and obese women: The role of posture allocation. Obesity 2008; 16: 34–39.

    PubMed  Google Scholar 

  17. Meijer GA, Westerterp KR, van Hulsel AM, ten Hoor F . Physical activity and energy expenditure in lean and obese adult human subjects. Eur J Appl Physiol Occup Physiol 1992; 65: 525–528.

    CAS  PubMed  Google Scholar 

  18. Levine JA, Schleusner SJ, Jensen MD . Energy expenditure of nonexercise activity. Am J Clin Nutr 2000; 72: 1451–1454.

    CAS  PubMed  Google Scholar 

  19. Schoeller DA, Jefford G . Determinants of the energy costs of light activities: inferences for interpreting doubly labeled water data. Int J Obes Relat Metab Disord 2002; 26: 97–101.

    CAS  PubMed  Google Scholar 

  20. Lamonte MJ, Ainsworth BE . Quantifying energy expenditure and physical activity in the context of dose response. Med Sci Sports Exerc 2001; 33: S370–S378.

    CAS  PubMed  Google Scholar 

  21. Mark AE, Janssen I . Dose-response relation between physical activity and blood pressure in youth. Med Sci Sports Exerc 2008; 40: 1007–1012.

    PubMed  Google Scholar 

  22. Vainionpaa A, Korpelainen R, Kaikkonen H, Knip M, Leppaluoto J, Jamsa T . Effect of impact exercise on physical performance and cardiovascular risk factors. Med Sci Sports Exerc 2007; 39: 756–763.

    PubMed  Google Scholar 

  23. Macfarlane DJ, Lee CCY, Ho EYK, Chan KL, Chan D . Convergent validity of six methods to assess physical activity in daily life. J Appl Physiol 2006; 101: 1328–1334.

    PubMed  Google Scholar 

  24. Montoye HJ, Kempen HCG, Saris WHM, Washburn RA . Measuring Physical Activity and Energy Expenditure. Human Kinetics: IL, 1996.

    Google Scholar 

  25. Bouten CVC, Koekkoek KTM, Verduin M, Kodde R, Janssen JD . A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity. IEEE Trans Biomed Eng 1997; 44: 136–147.

    CAS  PubMed  Google Scholar 

  26. Plasqui G, Westerterp KR . Physical activity assessment with accelerometers: an evaluation against doubly labeled water. Obesity 2007; 15: 2371–2379.

    PubMed  Google Scholar 

  27. Matthews CE, Ainsworth BE, Thompson RW, Bassett DR . Sources of variance in daily physical activity levels as measured by an accelerometer. Med Sci Sports Exerc 2002; 34: 1376–1381.

    PubMed  Google Scholar 

  28. Bravata DM, Smith-Spangler C, Sundaram V, Gienger AL, Lin N, Lewis R et al. Using pedometers to increase physical activity and improve health. JAMA 2007; 298: 2296–2304.

    CAS  PubMed  Google Scholar 

  29. Clemes SA, Griffiths PL, Hamilton SL . Four-week pedometer-determined activity patterns in normal weight and overweight UK adults. Int J Obes 2007; 31: 261–266.

    CAS  Google Scholar 

  30. Bassett Jr DR, Cureton AL, Ainsworth BE . Measurement of daily walking distance-questionnaire versus pedometer. Med Sci Sports Exerc 2000; 32: 1018–1023.

    PubMed  Google Scholar 

  31. Crouter SE, Schneider PL, Bassett DRJ . Spring-levered versus piezo-electric pedometer accuracy in overweight and obese adults. Med Sci Sports Exerc 2005; 37: 1673–1679.

    PubMed  Google Scholar 

  32. Melanson EL, Knoll JR, Bell ML, Donahoo WT, Hill JO, Nysse LJ et al. Commercially available pedometers: considerations for accurate step counting. Prev Med 2004; 39: 361–368.

    PubMed  Google Scholar 

  33. Clemes SA, O’Connell S, Rogan LM, Griffiths PL . Evaluation of a commercially available pedometer used to promote physical activity as part of a national programme. Br J Sports Med 2010; 44: 1178–1183.

    CAS  PubMed  Google Scholar 

  34. Tudor-Locke C, Williams JE, Reis JP, Pluto D . Utility of pedometers for assessing physical activity: convergent validity. Sports Med 2002; 32: 795–808.

    PubMed  Google Scholar 

  35. Leenders N, Sherman WM, Nagaraja HN, Kien CL . Evaluation of methods to assess physical activity in free-living conditions. Med Sci Sports Exerc 2001; 33: 1233–1240.

    CAS  PubMed  Google Scholar 

  36. Melanson Jr EL, Freedson PS . Validity of the Computer Science and Applications, Inc. (CSA) activity monitor. Med Sci Sports Exerc 1995; 27: 934–940.

    PubMed  Google Scholar 

  37. Garcia E, Hang Ding Sarela A, Karunanithi M . Can a mobile phone be used as a pedometer in an outpatient cardiac rehabilitation program? IEEE/ICME International Conference on Complex Medical Engineering (CME), Gold Coast, QSL, Australia, 2010, pp 250–253.

    Google Scholar 

  38. Kevin P, William GG, Fred R, Stephen SI . Health and the mobile phone. Am J Prev Med 2008; 35: 177–181.

    Google Scholar 

  39. Antonsson EK, Mann RW . The frequency content of gait. J Biomech 1985; 18: 39–47.

    CAS  PubMed  Google Scholar 

  40. Linden D, Reddy TB . Principle of operation - Basic concepts. In: Linden D, Reddy TB (eds). Handbook of Batteries, 3rd edn. McGraw-Hill: New York, 2002, pp 3–17.

    Google Scholar 

  41. Chen KY, Bassett Jr DR . The technology of accelerometry-based activity monitors: current and future. Med Sci Sports Exerc 2005; 37: S490–S500.

    PubMed  Google Scholar 

  42. Bao M . Micro Mechanical Transducers: Pressure Sensors, Accelerometers, and Gyroscopes vol. 8. Elsevier: Amsterdam, 2000.

    Google Scholar 

  43. Zhang K, Werner P, Sun M, Pi-Sunyer FX, Boozer CN . Measurement of human daily physical activity. Obes Res 2003; 11: 33–40.

    CAS  PubMed  Google Scholar 

  44. Levine JA, McCrady SK, Lanningham-Foster LM, Kane PH, Foster RC, Manohar CU . The role of free-living daily walking in human weight gain and obesity. Diabetes 2008; 57: 548–554.

    CAS  PubMed  Google Scholar 

  45. Bao L, Intille SS . Activity recognition from user-annotated acceleration data. Pervas Comput Proc 2004; 3001: 1–17.

    Google Scholar 

  46. Bussmann JB, Martens WL, Tulen JH, Schasfoort FC, van den Berg-Emons HJ, Stam HJ . Measuring daily behavior using ambulatory accelerometry: the activity monitor. Behav Res Methods Instrum Comput 2001; 33: 349–356.

    CAS  PubMed  Google Scholar 

  47. Veltink PH, Bussmann HB, de Vries W, Martens WL, Van Lummel RC . Detection of static and dynamic activities using uniaxial accelerometers. IEEE Trans Rehabil Eng 1996; 4: 375–385.

    CAS  PubMed  Google Scholar 

  48. Duda RO, Hart PE, Stork DG . Pattern Classification 2nd edn. Wiley-Interscience: New York, 2000. 654pp.

    Google Scholar 

  49. Bussmann HB, Reuvekamp PJ, Veltink PH, Martens WL, Stam HJ . Validity and reliability of measurements obtained with an ‘activity monitor’ in people with and without a transtibial amputation. Phys Ther 1998; 78: 989–998.

    CAS  PubMed  Google Scholar 

  50. Bussmann JB, Tulen JH, van Herel EC, Stam HJ . Quantification of physical activities by means of ambulatory accelerometry: a validation study. Psychophysiology 1998; 35: 488–496.

    CAS  PubMed  Google Scholar 

  51. Bussmann JB, van de Laar YM, Neeleman MP, Stam HJ . Ambulatory accelerometry to quantify motor behaviour in patients after failed back surgery: a validation study. Pain 1998; 74: 153–161.

    CAS  PubMed  Google Scholar 

  52. van den Berg-Emons HJ, Bussmann JB, Balk AH, Stam HJ . Validity of ambulatory accelerometry to quantify physical activity in heart failure. Scand J Rehabil Med 2000; 32: 187–192.

    CAS  PubMed  Google Scholar 

  53. Pober DM, Staudenmayer J, Raphael C, Freedson PS . Development of novel techniques to classify physical activity mode using accelerometers. Med Sci Sports Exerc 2006; 38: 1626–1634.

    PubMed  Google Scholar 

  54. Bonomi AG, Goris AH, Yin B, Westerterp KR . Detection of type, duration, and intensity of physical activity using an accelerometer. Med Sci Sports Exerc 2009; 41: 1770–1777.

    PubMed  Google Scholar 

  55. Bonomi AG, Plasqui G, Goris AHC, Westerterp KR . Aspects of activity behavior as a determinant of the physical activity level. Scand J Med Sci Sports 2011; doi:10.1111/j.1600.0838.2010.01130.x.

  56. Foerster F, Smeja M, Fahrenberg J . Detection of posture and motion by accelerometry: a validation study in ambulatory monitoring. Comput Human Behav 1999; 15: 571–583.

    Google Scholar 

  57. Van Laerhoven K . Spine versus porcupine: a study in distributed wearable activity recognition. Eighth IEEE Int Symp Wearable Comput (ISWC 2004) 2004; 142–149.

  58. Najafi B, Aminian K, Paraschiv-Ionescu A, Loew F, Bula CJ, Robert P . Ambulatory system for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the elderly. IEEE Trans Biomed Eng 2003; 50: 711–723.

    PubMed  Google Scholar 

  59. Bonomi AG, Plasqui G, Goris AH, Westerterp KR . Improving assessment of daily energy expenditure by identifying types of physical activity with a single accelerometer. J Appl Physiol 2009; 107: 655–661.

    CAS  PubMed  Google Scholar 

  60. Crouter SE, Churilla JR, Bassett Jr DR . Estimating energy expenditure using accelerometers. Eur J Appl Physiol 2006; 98: 601–612.

    PubMed  Google Scholar 

  61. Bouten CV, Westerterp KR, Verduin M, Janssen JD . Assessment of energy expenditure for physical activity using a triaxial accelerometer. Med Sci Sports Exerc 1994; 26: 1516–1523.

    CAS  PubMed  Google Scholar 

  62. Bassett Jr DR, Ainsworth BE, Swartz AM, Strath SJ, O’Brien WL, King GA . Validity of four motion sensors in measuring moderate intensity physical activity. Med Sci Sports Exerc 2000; 32: S471–S480.

    PubMed  Google Scholar 

  63. Crouter SE, Clowers KG, Bassett DR . A novel method for using accelerometer data to predict energy expenditure. J Appl Physiol 2006; 100: 1324–1331.

    PubMed  Google Scholar 

  64. Bouten CV, Verboeket-van de Venne WP, Westerterp KR, Verduin M, Janssen JD . Daily physical activity assessment: comparison between movement registration and doubly labeled water. J Appl Physiol 1996; 81: 1019–1026.

    CAS  PubMed  Google Scholar 

  65. Plasqui G, Joosen A, Kester AD, Goris AHC, Westerterp K . Measuring free-living energy expenditure and physical activity with triaxial accelerometry. Obes Res 2005; 13: 1363–1369.

    PubMed  Google Scholar 

  66. Bonomi AG, Plasqui G, Goris AHC, Westerterp KR . Estimation of free-living energy expenditure using a novel activity monitor designed to minimize obtrusiveness. Obesity 2010; 18: 1845–1851.

    PubMed  Google Scholar 

  67. van Hees VT, Ekelund U . Novel daily energy expenditure estimation by using objective activity type classification: where do we go from here? J Appl Physiol 2009; 107: 639–640.

    PubMed  Google Scholar 

  68. Rothney MP, Neumann M, Beziat A, Chen KY . An artificial neural network model of energy expenditure using nonintegrated acceleration signals. J Appl Physiol 2007; 103: 1419–1427.

    PubMed  Google Scholar 

  69. Brage S, Brage N, Ekelund U, Luan J, Franks PW, Froberg K et al. Effect of combined movement and heart rate monitor placement on physical activity estimates during treadmill locomotion and free-living. Eur J Appl Physiol 2006; 96: 517–524.

    PubMed  Google Scholar 

  70. Brage S, Brage N, Franks PW, Ekelund U, Wong MY, Andersen LB et al. Branched equation modeling of simultaneous accelerometry and heart rate monitoring improves estimate of directly measured physical activity energy expenditure. J Appl Physiol 2004; 96: 343–351.

    PubMed  Google Scholar 

  71. Hay DC, Wakayama A, Sakamura K, Fukashiro S . Improved estimation of energy expenditure by artificial neural network modeling. App Physiol Nutr Metab 2008; 33: 1213–1222.

    Google Scholar 

  72. Strath SJ, Brage S, Ekelund U . Integration of physiological and accelerometer data to improve physical activity assessment. Med Sci Sports Exerc 2005; 37: S563–S571.

    PubMed  Google Scholar 

  73. Zakeri IF, Adolph AL, Puyau MR, Vohra FA, Butte NF . Multivariate adaptive regression splines models for the prediction of energy expenditure in children and adolescents. J Appl Physiol 2010; 108: 128–136.

    PubMed  Google Scholar 

  74. Johannsen DL, Calabro MA, Stewart J, Franke W, Rood JC, Welk GJ . Accuracy of armband monitors for measuring daily energy expenditure in healthy adults. Med Sci Sports Exerc 2010; 42: 2134–2140.

    PubMed  Google Scholar 

  75. Assah FK, Ekelund U, Brage S, Wright A, Mbanya JC, Wareham NJ . Accuracy and validity of a combined heart rate and motion sensor for the measurement of free-living physical activity energy expenditure in adults in Cameroon. Int J Epidemiol 2011; 40: 112–120.

    PubMed  Google Scholar 

  76. Pate RR, Pratt M, Blair SN, Haskell WL, Macera CA, Bouchard C et al. Physical activity and public health. a recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine. JAMA 1995; 273: 402–407.

    CAS  PubMed  Google Scholar 

  77. Tudor-Locke C, Bassett Jr DR . How many steps/day are enough?: preliminary pedometer indices for public health. Sports Med 2004; 34: 1–8.

    PubMed  Google Scholar 

  78. Healy GN, Dunstan DW, Salmon J, Cerin E, Shaw JE, Zimmet PZ et al. Breaks in sedentary time: beneficial associations with metabolic risk. Diabetes Care 2008; 31: 661–666.

    PubMed  Google Scholar 

  79. Owen N, Bauman A, Brown W . Too much sitting: a novel and important predictor of chronic disease risk? Br J Sports Med 2009; 43: 81–83.

    CAS  PubMed  Google Scholar 

  80. Uiterwaal M, Glerum EBC, Busser HJ, van Lummel RC . Ambulatory monitoring of physical activity in working situations, a validation study. J Med Eng Technol 1998; 22: 168–172.

    CAS  PubMed  Google Scholar 

  81. Zhang K, Sun M, Lester DK, Pi-Sunyer FX, Boozer CN, Longman RW . Assessment of human locomotion by using an insole measurement system and artificial neural networks. J Biomech 2005; 38: 2276–2287.

    PubMed  Google Scholar 

  82. Staudenmayer J, Pober D, Crouter S, Bassett D, Freedson P . An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer. J Appl Physiol 2009; 107: 1300–1307.

    PubMed  PubMed Central  Google Scholar 

  83. Karantonis DM, Narayanan MR, Mathie M, Lovell NH, Celler BG . Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Trans Inf Technol Biomed 2006; 10: 156–167.

    PubMed  Google Scholar 

  84. Yang S-I, Cho S-B . Recognizing human activities from accelerometer and physiological sensors. In: Sukhan L, Hanseok K, Hernsoo H (eds). Multisensor Fusion and Integration for Intelligent Systems. Springer, 2009, pp 187–199.

  85. Manohar C, McCrady S, Pavlidis IT, Levine JA . An accelerometer-based earpiece to monitor and quantify physical activity. J Phys Act Health 2009; 6: 781–789.

    PubMed  Google Scholar 

  86. Dijkstra B, Kamsma Y, Zijlstra W . Detection of gait and postures using a miniaturised triaxial accelerometer-based system: accuracy in community-dwelling older adults. Age Ageing 2010; 39: 259–262.

    PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by Philips Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A G Bonomi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonomi, A., Westerterp, K. Advances in physical activity monitoring and lifestyle interventions in obesity: a review. Int J Obes 36, 167–177 (2012). https://doi.org/10.1038/ijo.2011.99

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2011.99

Keywords

Search

Quick links