[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming

Abstract

The initiation of T-cell–mediated antitumor immune responses requires the uptake and processing of tumor antigens by dendritic cells and their presentation on MHC-I molecules. Here we show in a human in vitro model system that exosomes, a population of small membrane vesicles secreted by living tumor cells, contain and transfer tumor antigens to dendritic cells. After mouse tumor exosome uptake, dendritic cells induce potent CD8+ T-cell–dependent antitumor effects on syngeneic and allogeneic established mouse tumors. Therefore, exosomes represent a novel source of tumor-rejection antigens for T-cell cross priming, relevant for immunointerventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tumor cells display multivesicular bodies and secrete exosomes.
Figure 2: Cross-immunizations using tumor-derived exosomes.
Figure 3: Dendritic cells loaded with exosomes promote cross-protective antitumor effects.
Figure 4: Exosomes mediate CD4+ and CD8+ T-cell–dependent antitumor effects.
Figure 5: Melanoma-derived exosomes transfer tumor antigens to MD-DCs.
Figure 6: Tumor-derived exosomes contain HSP70 and whole native tumor antigens.

Similar content being viewed by others

References

  1. Boon, T. & Van der Bruggen, P. Human tumor antigens recognized by T lymphocytes. J. Exp. Med. 183, 725–729 (1996).

    Article  CAS  Google Scholar 

  2. Rosenberg, S.A. A new era for cancer immunotherapy based on the genes that encode cancer antigens. Immunity 10, 281–287 (1999).

    Article  CAS  Google Scholar 

  3. Gilboa, E. The makings of a tumor rejection antigen. Immunity 11, 263–270 (1999).

    Article  CAS  Google Scholar 

  4. Klein, G., Sjögren, H.O., Klein, E. & Hellström, K.E. Demonstration of resistance against methylcholanthrene-induced sarcomas in the primary autochtonous host. Cancer Res. 20, 1561–1572 (1960).

    CAS  PubMed  Google Scholar 

  5. Old, L.J., Boyse, E.A., Clarke, D.A. & A, C.E. Antigenic properties of chemically induced tumors. Ann. NY Acad. Sci. 101, 80–106 (1962).

    Article  CAS  Google Scholar 

  6. Old, L.J. Cancer immunology, the search for specificity. Cancer Res. 41, 361–375 (1981).

    CAS  PubMed  Google Scholar 

  7. Brändle, D. et al. The shared tumor-specific antigen encoded by mouse gene P1A is a target not only for CTL but also for tumor rejection. Eur. J. Immunol. 28, 4010–4019 (1998).

    Article  Google Scholar 

  8. Ramarathinam, L. et al. Multiple lineages of tumors express a common tumor antigen, P1A, but they are not cross-protected. J. Immunol. 155, 5323–5329 (1995).

    CAS  PubMed  Google Scholar 

  9. Zorn, E. & Hercend, T. A natural cytotoxic T cell response in a spontaneously regressing human melanoma targets a neoantigen resulting from a somatic point mutation. Eur. J. Immunol. 29, 592–601 (1999).

    Article  CAS  Google Scholar 

  10. Imro, M.A. et al. Major histocompatibility complex class I restricted cytotoxic T cells specific for natural melanoma peptides recognize unidentified shared melanoma antigens. Cancer Res. 59, 2287–2291 (1999).

    CAS  PubMed  Google Scholar 

  11. Johnston, J.V. et al. B7-CD28 costimulation unveils the hierarchy of tumor epitopes recognized by the majority of HLA-A2-restricted CD8+ CTL. J. Exp. Med. 183, 791–800 (1996).

    Article  CAS  Google Scholar 

  12. Albert, M.L., Sauter, B. & Bhardwaj, N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392, 86–89 (1998).

    Article  CAS  Google Scholar 

  13. Russo, V. et al. DC acquire the MAGE3 human tumor antigen from apoptotic cells and induce a class I-restricted T cell response. Proc. Natl. Acad. Sci. 97, 2185–2190 (2000).

    Article  CAS  Google Scholar 

  14. Fields, R.C., Shimizu, K. & Mulé, J.J. Murine dendritic cells pulsed with whole tumor lysates mediate potent antitumor immune responses in vitro and in vivo. Proc. Natl. Acad. Sci. 95, 9482–9487 (1998).

    Article  CAS  Google Scholar 

  15. Srivastava, P.K., Udono, H., Blachere, N.E. & Li, Z. Heat shock proteins transfer peptides during antigen processing and CTL priming. Immunogenetics 39, 93–98 (1994).

    Article  CAS  Google Scholar 

  16. Tamura, Y., Peng, P., Liu, K., Daou, M. & Srivastava, P.K. Immunotherapy of tumors with autologous tumor derived heat shock protein preparations. Science 278, 117–120 (1997).

    Article  CAS  Google Scholar 

  17. Boczkowski, D., Nair, S.K., Snyder, D. & Gilboa, E. Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J. Exp. Med. 184, 465–472 (1996).

    Article  CAS  Google Scholar 

  18. Nair, S.K. et al. Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA. Nature Biotechnol. 16, 364–369 (1998).

    Article  CAS  Google Scholar 

  19. Raposo, G. et al. B lymphocytes secrete antigen-presenting vesicles. J. Exp. Med. 183, 1161–1172 (1996).

    Article  CAS  Google Scholar 

  20. Zitvogel, L. et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nature Med. 4, 594–600 (1998).

    Article  CAS  Google Scholar 

  21. Thery, C. et al. Molecular characterization of dendritic cell-derived exosomes: selective accumulation of the heat shock protein hsc73. J. Cell Biol. 147, 599–610 (1999).

    Article  CAS  Google Scholar 

  22. Escola, J.M. et al. Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B lymphocytes. J. Biol. Chem. 32, 20121–20127 (1998).

    Article  Google Scholar 

  23. Sallusto, F. & Lanzavecchia, A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor α. J. Exp. Med. 179, 1109–1118 (1994).

    Article  CAS  Google Scholar 

  24. Zitvogel, L. et al. Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines. J. Exp. Med. 183, 87–97 (1996).

    Article  CAS  Google Scholar 

  25. Dufour, E. et al. Diversity of the cytotoxic melanoma-specific immune response: some CTL clones recognize autologous fresh tumor cells and not tumor cell lines. J. Immunol. 158, 3787–3795 (1997).

    CAS  PubMed  Google Scholar 

  26. Angevin, E. et al. Human renal cell carcinoma xenografts in SCID mice: tumorigenicity correlates with a poor clinical prognosis. Lab. Invest. 79, 879–888 (1999).

    CAS  PubMed  Google Scholar 

  27. Fernandez, N.C. et al. Dendritic cells directly trigger NK cell functions: a cross-talk relevant in innate antitumor immune responses in vivo. Nature Med. 5, 405–411 (1999).

    Article  CAS  Google Scholar 

  28. Ahmed, M. et al. BCR-ABL and constitutively active erythropoietin receptor (cEpoR) activate distinct mechanisms for growth factor-independence and inhibition of apoptosis in Ba/F3 cell line. Oncogene 16, 489–496 (1998).

    Article  CAS  Google Scholar 

  29. Cobbold, S.P., Jayasuriya, A., Nash, A., Prospero, T.D. & Waldmann, H. Therapy with monoclonal antibodies by elimination of T-cell subsets in vivo. Nature 312, 548–551 (1984).

    Article  CAS  Google Scholar 

  30. Raposo, G. et al. Accumulation of major histocompatibility complex class II molecules in mast cell secretory granules and their release upon degranulation. Mol. Biol. Cell 8, 2631–2645 (1997).

    Article  CAS  Google Scholar 

  31. Caignard, A. In Situ demonstration of renal-cell-carcinoma-specific T-cell clones. Int. J. Cancer 66, 564–570 (1996).

    Article  CAS  Google Scholar 

  32. Chen, L. et al. Tumor immunogenicity determines the effect of B7 costimulation on T cell-mediated tumor immunity. J. Exp. Med. 179, 523–532 (1994).

    Article  CAS  Google Scholar 

  33. Wubbolts, R. et al. Direct vesicular transport of MHC class II molecules from lysosomal structures to the cell surface. J. Cell Biol. 135, 611–622 (1996).

    Article  CAS  Google Scholar 

  34. Grommé, M. et al. Recycling MHC class I molecules and endosomal peptide loading. Proc. Natl. Acad. Sci. 96, 10326–10331 (1999).

    Article  Google Scholar 

  35. Coggin, J.H.J. Cross-reacting tumor associated transplantation antigen on primary 3-methylcholanthrene-induced BALB/c sarcomas. Mol. Biother. 4, 223–228 (1989).

    Google Scholar 

  36. Pan, B.T. & Johnstone, R.M. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33, 967–977 (1983).

    Article  CAS  Google Scholar 

  37. Johnstone, R.M., Matthew, A., Mason, A.B. & Teng, K. Exosome formation during maturation of mammalian and avian reticulocytes: evidence that exosome release is a major route for externalization of obsolete membrane proteins. J. Cell Biol. 147, 27 (1991).

    CAS  Google Scholar 

  38. Rieu, S., Geminard, C., Rabesandratana, H., Sainte-Marie, J. & Vidal, M. Exosomes released during reticulocyte maturation bind to fibronectin via α4β1. Eur. J. Biochem. 267, 583–590 (2000).

    Article  CAS  Google Scholar 

  39. Stauss, H.J. Immunotherapy with CTLs restricted by nonself MHC. Immunol. Today 20, 180–183 (1999).

  40. Albert, M.L., Kim, J.I. & Birge, R.B. The alphavbeta5 integrin recruits the Crk/Dock180 molecular complex for phagocytosis of apoptotic cells. Nature Cell Biol. 2, 899–905 (2000).

    Article  CAS  Google Scholar 

  41. Sauter, B. et al. Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J. Exp. Med. 191, 423–433 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. André, A. Caignard and C. Bonnerot for helpful discussions; M.-F. Avril for providing us with melanoma patient-derived tumor material; A. Le Cesne for blood samples; S. Koscielny for statistical analysis; and the staff of the animal facility for animal care and handling. This work was supported by the Ligue Française de Lutte Contre le Cancer 'Axe Immunologie des Tumeurs', INSERM, CNRS, APCells SA and Inc., GEFLUC and Association pour la Recherche Contre Le Cancer ARC. J.W. was supported by Ligue Nationale de Lutte Contre le Cancer, A.L. by ARC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sebastian Amigorena or Laurence Zitvogel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolfers, J., Lozier, A., Raposo, G. et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med 7, 297–303 (2001). https://doi.org/10.1038/85438

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/85438

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing