Abstract
Expertise with unfamiliar objects (‘greebles’) recruits face-selective areas in the fusiform gyrus (FFA) and occipital lobe (OFA). Here we extend this finding to other homogeneous categories. Bird and car experts were tested with functional magnetic resonance imaging during tasks with faces, familiar objects, cars and birds. Homogeneous categories activated the FFA more than familiar objects. Moreover, the right FFA and OFA showed significant expertise effects. An independent behavioral test of expertise predicted relative activation in the right FFA for birds versus cars within each group. The results suggest that level of categorization and expertise, rather than superficial properties of objects, determine the specialization of the FFA.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
£139.00 per year
only £11.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Archambault, A., O'Donnell, C. & Schyns, P.G. Blind to object changes: When learning the same object at different levels of categorization modifies its perception. Psychol. Sci. 10, 249–255 (1999).
Allison, T. et al. Face recognition in human extrastriate cortex. J. Neurophysiol. 71, 821–825 (1994).
Gauthier, I., Tarr, M. J., Moylan, J., Anderson, A. W. & Gore, J.C. The functionally-defined ‘face area’ is engaged by subordinate-level recognition. Cognit. Neuropsychol. (in press).
Gauthier, I., Tarr, M. J., Anderson, A. W., Skudlarski, P. & Gore, J.C. Activation of the middle fusiform ‘face area’ increases with expertise in recognizing novel objects, Nat. Neurosci. 2, 568–573 (1999).
Haxby, J. V. et al. The functional organization of human extrastriate cortex: A PET-RCBF study of selective attention to faces and locations. J. Neurosci. 14, 6336–6353 (1994).
Kanwisher, N., McDermott, J. & Chun, M.M. The fusiform face area: A module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).
McCarthy, G., Puce, A., Gore, J. C. & Allison, T. Face-specific processing in the human fusiform gyrus. J. Cogn. Neurosci. 9, 605–610 (1997).
Puce, A., Allison, T., Asgari, M. Gore, J. C. & McCarthy, G. Face-sensitive regions in extrastriate cortex studied by functional MRI. Neurophysiology 74, 1192–1199 (1996).
Sergent, J., Otha, S. & MacDonald, B. Functional neuroanatomy of face and object processing. Brain, 115, 15–36 (1992).
Kanwisher, N., Stanley, D. & Harris, A. The fusiform face area is selective for faces not animals. Neuroreport 10, 183–187 (1999).
Sergent, J. & Signoret, J.L. Varieties of functional deficits in prosopagnosia. Cereb. Cortex 2, 375–388 (1992).
McNeil, J. E. & Warrington, E.K. Prosopagnosia: A face-specific disorder. Q. J. Exp. Psychol. A 46, 1–10 (1993).
Moscovitch, M., Winocur, G. & Behrmann, M. What is special in face recognition? Nineteen experiments on a person with visual object agnosia and dyslexia but normal face recognition. J. Cogn. Neurosci. 9, 555–604 (1997).
Assal, G., Favre, C. & Anderes, J.P. Non-reconnaissance d'animaux familiers chez un paysan. Rev. Neurol. 140, 580–584 (1984).
Ishai, A. Ungerleider, L. G., Martin, A., Schouten, J. L. & Haxby, J. Distributed representation of objects in the human ventral visual pathway. Proc. Natl. Acad. Sci. USA 96, 9379–9384 (1999).
Tanaka, K. Inferotemporal cortex and object vision. Annu. Rev. Neurosci. 19, 109–139 (1996).
Bornstein, B. in Problems of Dynamic Neurology (ed. Halpern, L.) 283–318 (Hadassah Medical Organization, Jerusalem, 1963).
Lhermitte, J., Chain, F., Escouroole, R., Ducarne, B. & Pillon, B. Étude anatomo-clinique d'un cas de prosopagnosie. Rev. Neurol. (Paris) 126, 329–346 (1972).
Damasio, A. R. & Damasio, H. & Van Hoesen, G. W. Prosopagnosia: anatomic basis and behavioral mechanisms. Neurology 32, 331–341 (1982).
Dixon, M. J., Bub, D. N. & Arguin, M. Semantic and visual determinants of face recognition in a prosopagnosic patient. J. Cogn. Neurosci. 10, 362–376 (1998).
Riddoch, J. M. & Humphreys, G.W. Visual processing in optic aphasia: A case of semantic access agnosia. Cognit. Neuropsychol. 4, 131–186 (1987).
Gauthier, I., Behrmann, M. & Tarr, M.J. Can face recognition really be dissociated from object recognition? J. Cogn. Neurosci. 11, 349–370 (1999).
Yin, R.K. Looking at upside-down faces. J. Exp. Psychol. 81, 141–145 (1969).
Tanaka, J. W. & Farah, M.J. Parts and wholes in face recognition. Q. J. Exp. Psychol. A 46, 225–245 (1993).
Farah, M. J., Wilson, K. D., Drain, H. M. & Tanaka, J.W. The inverted face inversion effect in prosopagnosia: Evidene for mandatory, face-specific perceptual mechanisms. Neuropsychologia 33, 661–674 (1995).
Diamond, R. & Carey, S. Why faces are and are not special: An effect of expertise. J. Exp. Psychol. Gen. 115, 107–117 (1986).
Gauthier, I. & Tarr, M.J. Becoming a ‘Greeble’ expert: Exploring the face recognition mechanisms. Vision Res. 37, 1673–1682 (1997).
Gauthier, I., Williams, P., Tarr, M. J. & Tanaka, J.W. Training ‘Greeble’ experts: A framework for studying expert object recognition processes. Vision Res. 38, 2401–2428 (1998).
deGelder, B., Bachoud-Lévi, A.-C. & Degos, J.-D. Inversion superiority in visual agnosia may be common to a variety of orientation-polarised objects besides faces. Vision Res. 38, 2855–2861 (1998).
Gauthier, I., Anderson, A. W., Tarr, M. J., Skudlarski, P. & Gore, J.C. Levels of categorization in visual object recognition studied with functional MRI. Curr. Biol. 7, 645–651 (1997).
Halgren E., Dale, A. M., Sereno, M. I., Tootell, R. B., Marinkovic, K. & Rosen, B.R. Location of human face-selective cortex with respect to retinotopic areas. Hum. Brain Mapp. 7, 29–37 (1999).
Rolls, E. T. & Baylis, G.C. Size and contrast have only small effects on the response to faces of neurons in the cortex of the superior temporal sulcus of the monkey. Exp. Brain Res. 65, 38–48 (1986).
Rosnow, R. L. & Rosenthal, R. “Some things you learn aren't so”: Cohen's paradox, Asch's Paradigm, and the interpretation of interaction. Psychol. Sci. 6, 3–9 (1995).
Epstein, R., Harris, A., Stanley, D. & Kanwisher, N. The parahippocampal place area: Recognition, navigation, or encoding? Neuron 23, 115–125 (1999).
Puce, A., Allison, T., Asgari, M. Gore, J. C. & McCarthy, G. Differential sensitivity of human visual cortex to faces, letterstrings, and textures: A functional magnetic resonance imaging study, J. Neurosci. 16, 5205–5215 (1996).
Wojciulik, E., Kanwisher, N. & Driver, J. Modulation of activity in the fusiform face area by covert attention: an fMRI study. J. Neurophysiol. 79, 1574–1578 (1998).
Tranel, D., Logan, C. G., Frank, R. J. & Damasio, A.R. Explaining category-related effects in the retrieval of conceptual and lexical knowledge for concrete entities: operationalization and analysis of factors. Neuropsychologia 35, 1329–1339 (1997).
Skudlarski, P., Constable, R. T. & Gore, J.C. ROC analysis of statistical methods used in functional MRI: Individual subjects. Neuroimage 9, 311–329 (1999).
Acknowledgements
We thank Nancy Kanwisher and René Marois for discussions and Jill Moylan, Terry Hickey and Hedy Sarofin for technical assistance. This work was supported by NINDS grant NS33332 to J.C.G. and NIMH grant 56037 to N. Kanwisher. I.G. was supported by NSERC.
Author information
Authors and Affiliations
Corresponding author
Additional information
Note: Additional analysis can be found on the Nature Neuroscience web site (http://neurosci.nature.com/web_specials/).
Supplementary information
Using a functional definition of a brain area considerably increases the sensitivity and statistical power of neuroimaging analyses. However, the rules used to define an 'area' are somewhat arbitrary, and different criteria will generate areas of different sizes that include variable proportions of highly selective voxels. When applying an ROI selected in a localizer run to results obtained in other runs, authors may choose either to make the region large enough to be confident of capturing the same selective voxels in other runs, or to make the region small enough that it will not include nonselective voxels that may not belong in the same functional area. These two goals motivated the two definitions used in our study. A first criterion defined a right FFA ROI (mean size of six voxels) which we found almost always overlapped with the face-selective region obtained in the experimental runs. A more stringent definition was used to define a center-of-the right 'face area' ROI with a mean size of three voxels. This second definition was adopted as analogous to the criterion used in single-cell recording1, emphasizing the magnitude of the selectivity for faces over objects in each voxel.
We also applied a criterion used previously by Kanwisher and colleagues2,3. This criterion selects all voxels that show a faces-versus-objects difference that is significant at p < 0.0001 on a Kolmogorov-Smirnov test. Because the data acquired in this study at 1.5 T was noisier than that obtained in this study at 3 T as well as in previous studies using this definition, only 7 of our 19 subjects had a right FFA ROI using this criterion. In these subjects, this definition led to a right FFA of six voxels, on average.
For comparison, we give the mean percent signal change in each condition for the right FFA for the three definitions in this subgroup of subjects as well as for the two definitions which could be used in all subjects (Table S1). We also give the percentage of the face selectivity that is accounted for by the expertise effect alone (expert - novice/face - novice) as well as by the level of categorization alone (novice - object/face - object). Note that there is some variability accounted for by the choice of the criterion but that the choice of the subject sample has a relatively more important effect.
A major difference between the 2 most stringent criteria (p < 0.0001 and voxel-based) is that the p < 0.0001 criterion is less inclusive with regard to subject (only 7 of 19 subjects had a right FFA), whereas the voxel-based criterion is less inclusive with regard to number of voxels. (The mean size of the FFA defined by this criterion was three versus six in the FFA for the same subjects.) Nonetheless, the level of categorization and expertise effects were present using both definitions, although the magnitude of these effects is different. Note that the choice of the subject sample seemed to have more influence that the criterion per se. This was probably because the smaller sample included only subjects with FFAs with very large face selectivity, thereby artificially reducing the size of the other effects relative to the face activation. The magnitude of the expertise effect (expert - novice) was not significantly correlated with the magnitude of the face selectivity (face - object; p > 0.5), regardless of the ROI definition used. Note that the voxel-based criterion had the advantages of including more subjects as well as defining FFAs that showed stronger face selectivity in both subject samples.
REFERENCES in Supplementary Information
-
1
Rolls, E. T. & Baylis, G. C. Size and contrast have only small effects on the response to faces of neurons in the cortex of the superior temporal sulcus of the monkey. Exp. Brain Res. 65, 38-48 (1986).
-
2
Kanwisher, N., McDermott, J. & Chun, M. M. The fusiform face area: A module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302-4311 (1997).
-
3
Kanwisher, N., Stanley, D. & Harris, A. The fusiform face area is selective for faces not animals. Neuroreport, 10, 183-187 (1999).
Rights and permissions
About this article
Cite this article
Gauthier, I., Skudlarski, P., Gore, J. et al. Expertise for cars and birds recruits brain areas involved in face recognition. Nat Neurosci 3, 191–197 (2000). https://doi.org/10.1038/72140
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/72140
This article is cited by
-
Effects of expectation on face perception and its association with expertise
Scientific Reports (2024)
-
Introduction to the topical collection ‘locating representations in the brain: interdisciplinary perspectives’
Synthese (2024)
-
A neural marker of the human face identity familiarity effect
Scientific Reports (2023)
-
Exploring pattern recognition: what is the relationship between the recognition of words, faces and other objects?
Cognitive Processing (2023)
-
Spotting lesions in thorax X-rays at a glance: holistic processing in radiology
Cognitive Research: Principles and Implications (2022)