[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mitochondrial function in normal and diabetic β-cells

Abstract

The aetiology of type 2, or non-insulin-dependent, diabetes mellitus has been characterized in only a limited number of cases. Among these, mitochondrial diabetes, a rare subform of the disease, is the consequence of pancreatic β-cell dysfunction caused by mutations in mitochondrial DNA, which is distinct from the nuclear genome. The impact of such mutations on β-cell function reflects the importance of mitochondria in the control of insulin secretion. The β-cell mitochondria serve as fuel sensors, generating factors that couple nutrient metabolism to the exocytosis of insulin-containing vesicles. The latter process requires an increase in cytosolic Ca2+, which depends on ATP synthesized by the mitochondria. This organelle also generates other factors, of which glutamate has been proposed as a potential intracellular messenger.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A map of human mitochondrial DNA indicating diabetes-associated mutations.
Figure 2: The TCA cycle and respiratory chain in a mitochondrion.
Figure 3: Model for coupling of glucose metabolism to insulin secretion in the β-cell.
Figure 4: Electron micrograph of part of a rat β-cell showing mitochondria (m) and insulin-containing secretory granules (sg).

Similar content being viewed by others

References

  1. Wallace, D. C. Mitochondrial diseases in man and mouse. Science 283, 1482–1488 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Rizzuto, R. et al. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280, 1763–1766 (1998).

    ADS  CAS  PubMed  Google Scholar 

  3. Gray, M. W., Burger, G. & Lang, B. F. Mitochondrial evolution. Science 283, 1476–1481 (1999).

    ADS  CAS  PubMed  Google Scholar 

  4. Neupert, W. Protein import into mitochondria. Annu. Rev. Biochem. 66, 863–917 (1997).

    CAS  PubMed  Google Scholar 

  5. Larsson, N. G. et al. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nature Genet. 18, 231–236 (1998).

    CAS  PubMed  Google Scholar 

  6. Beckman, K. B. & Ames, B. N. The free radical theory of aging matures. Physiol. Rev. 78, 547–581 (1998).

    CAS  PubMed  Google Scholar 

  7. McCormack, J. G., Halestrap, A. P. & Denton, R. M. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol. Rev. 70, 391–425 (1990).

    CAS  PubMed  Google Scholar 

  8. Duchen, M. R. Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell death. J. Physiol. 516, 1–17 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Newgard, C. B. & McGarry, J. D. Metabolic coupling factors in pancreatic beta-cell signal transduction. Annu. Rev. Biochem. 64, 689–719 (1995).

    CAS  PubMed  Google Scholar 

  10. Matschinsky, F. M. A lesson in metabolic regulation inspired by the glucokinase glucose sensor paradigm. Diabetes 45, 223–241 (1996).

    CAS  PubMed  Google Scholar 

  11. Ishihara, H., Wang, H., Drewes, L. R. & Wollheim, C. B. Overexpression of monocarboxylate transporter and lactate dehydrogenase alters insulin secretory responses to pyruvate and lactate in β cells. J. Clin. Invest. 104, 1621–1629 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Schuit, F. et al. Metabolic fate of glucose in purified islet cells. Glucose-regulated anaplerosis in beta cells. J. Biol. Chem. 272, 18572–18579 (1997).

    CAS  PubMed  Google Scholar 

  13. Wollheim, C. B. Beta-cell mitochondria in the regulation of insulin secretion: a new culprit in Type II diabetes. Diabetologia 43, 265–277 (2000).

    CAS  PubMed  Google Scholar 

  14. Ashcroft, F. M. et al. Stimulus-secretion coupling in pancreatic beta cells. J. Cell Biochem. 55, 54–65 (1994).

    CAS  PubMed  Google Scholar 

  15. Rorsman, P. The pancreatic beta-cell as a fuel sensor: an electrophysiologist's viewpoint. Diabetologia 40, 487–495 (1997).

    CAS  PubMed  Google Scholar 

  16. Lang, J. Molecular mechanisms and regulation of insulin exocytosis as a paradigm of endocrine secretion. Eur. J. Endocrinol. 259, 3–17 (1999).

    CAS  Google Scholar 

  17. Dunne, M. J. et al. Familial persistent hyperinsulinemic hypoglycemia of infancy and mutations in the sulfonylurea receptor. N. Engl. J. Med. 336, 703–706 (1997).

    CAS  PubMed  Google Scholar 

  18. Grimberg, A. et al. Dysregulation of insulin secretion in children with congenital hyperinsulinism due to sulfonylurea receptor mutations. Diabetes 50, 322–328 (2001).

    CAS  PubMed  Google Scholar 

  19. Henquin, J. C. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 49, 1751–1760 (2000).

    CAS  PubMed  Google Scholar 

  20. Eliasson, L., Renstrom, E., Ding, W. G., Proks, P. & Rorsman, P. Rapid ATP-dependent priming of secretory granules precedes Ca2+-induced exocytosis in mouse pancreatic B-cells. J. Physiol. 503, 399–412 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Detimary, P., Van den Berghe, G. & Henquin, J. C. Concentration dependence and time course of the effects of glucose on adenine and guanine nucleotides in mouse pancreatic islets. J. Biol. Chem. 271, 20559–20565 (1996).

    CAS  PubMed  Google Scholar 

  22. Wollheim, C. B., Ullrich, S., Meda, P. & Vallar, L. Regulation of exocytosis in electrically permeabilized insulin-secreting cells. Evidence for Ca2+ dependent and independent secretion. Biosci. Rept. 7, 443–454 (1987).

    CAS  Google Scholar 

  23. Vallar, L., Biden, T. J. & Wollheim, C. B. Guanine nucleotides induce Ca2+-independent insulin secretion from permeabilized RINm5F cells. J. Biol. Chem. 262, 5049–5056 (1987).

    CAS  PubMed  Google Scholar 

  24. Proks, P., Eliasson, L., Ammala, C., Rorsman, P. & Ashcroft, F. M. Ca2+- and GTP-dependent exocytosis in mouse pancreatic beta-cells involves both common and distinct steps. J. Physiol. 496, 255–264 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Iezzi, M., Regazzi, R. & Wollheim, C. B. The Rab3-interacting molecule RIM is expressed in pancreatic beta-cells and is implicated in insulin exocytosis. FEBS Lett. 474, 66–70 (2000).

    CAS  PubMed  Google Scholar 

  26. Schuit, F. C., Huypens, P., Heimberg, H. & Pipeleers, D. G. Glucose sensing in pancreatic beta-cells: a model for the study of other glucose-regulated cells in gut, pancreas, and hypothalamus. Diabetes 50, 1–11 (2001).

    CAS  PubMed  Google Scholar 

  27. Huypens, P., Ling, Z., Pipeleers, D. & Schuit, F. Glucagon receptors on human islet cells contribute to glucose competence of insulin release. Diabetologia 43, 1012–1019 (2000).

    CAS  PubMed  Google Scholar 

  28. Jones, P. M., Fyles, J. M. & Howell, S. L. Regulation of insulin secretion by cAMP in rat islets of Langerhans permeabilised by high-voltage discharge. FEBS Lett. 205, 205–209 (1986).

    CAS  PubMed  Google Scholar 

  29. Ammala, C. et al. Activation of protein kinases and inhibition of protein phosphatases play a central role in the regulation of exocytosis in mouse pancreatic beta cells. Proc. Natl Acad. Sci. USA 91, 4343–4347 (1994).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ozaki, N. et al. cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nature Cell Biol. 2, 805–811 (2000).

    CAS  PubMed  Google Scholar 

  31. Pralong, W. F., Bartley, C. & Wollheim, C. B. Single islet beta-cell stimulation by nutrients: relationship between pyridine nucleotides, cytosolic Ca2+ and secretion. EMBO J. 9, 53–60 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Patterson, G. H., Knobel, S. M., Arkhammar, P., Thastrup, O. & Piston, D. W. Separation of the glucose-stimulated cytoplasmic and mitochondrial NAD(P)H responses in pancreatic islet beta cells. Proc. Natl Acad. Sci. USA 97, 5203–5207 (2000).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Prentki, M. et al. Malonyl-CoA and long chain acyl-CoA esters as metabolic coupling factors in nutrient-induced insulin secretion. J. Biol. Chem. 267, 5802–5810 (1992).

    CAS  PubMed  Google Scholar 

  34. Deeney, J. T. et al. Acute stimulation with long chain acyl-CoA enhances exocytosis in insulin-secreting cells (HIT T-15 and NMRI beta-cells). J. Biol. Chem. 275, 9363–9368 (2000).

    CAS  PubMed  Google Scholar 

  35. Antinozzi, P. A., Segall, L., Prentki, M., McGarry, J. D. & Newgard, C. B. Molecular or pharmacologic perturbation of the link between glucose and lipid metabolism is without effect on glucose-stimulated insulin secretion. A re-evaluation of the long-chain acyl-CoA hypothesis. J. Biol. Chem. 273, 16146–16154 (1998).

    CAS  PubMed  Google Scholar 

  36. Maechler, P., Kennedy, E. D., Pozzan, T. & Wollheim, C. B. Mitochondrial activation directly triggers the exocytosis of insulin in permeabilized pancreatic β-cells. EMBO J. 16, 3833–3841 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Maechler, P., Kennedy, E. D., Wang, H. & Wollheim, C. B. Desensitization of mitochondrial Ca2+ and insulin secretion responses in the beta cell. J. Biol. Chem. 273, 20770–20778 (1998).

    CAS  PubMed  Google Scholar 

  38. Maechler, P. & Wollheim, C. B. Glutamate acts as a mitochondrially derived messenger in glucose-induced insulin exocytosis. Nature 402, 685–689 (1999).

    ADS  CAS  PubMed  Google Scholar 

  39. Nissim, I. Newer aspects of glutamine/glutamate metabolism: the role of acute pH changes. Am. J. Physiol. 277, F493–F497 (1999).

    CAS  PubMed  Google Scholar 

  40. Sener, A. et al. Insulinotropic action of glutamic acid dimethyl ester. Am. J. Physiol. 267, E573–E584 (1994).

    CAS  PubMed  Google Scholar 

  41. Rubi, B., Ishihara, H., Hegardt, F. G., Wollheim, C. B. & Maechler, P. GAD65-mediated glutamate decarboxylation reduces glucose-stimulated insulin secretion in pancreatic beta cells. J. Biol. Chem. 276, 36391–36396 (2001).

    CAS  PubMed  Google Scholar 

  42. Maechler, P. & Wollheim, C. B. Mitochondrial signals in glucose-stimulated insulin secretion in the beta cell. J. Physiol. 529, 49–56 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Malaisse, W. J. et al. The stimulus–secretion coupling of glucose-induced insulin release. XXXV. The links between metabolic and cationic events. Diabetologia 16, 331–341 (1979).

    CAS  PubMed  Google Scholar 

  44. King, M. P. & Attardi, G. Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science 246, 500–503 (1989).

    ADS  CAS  PubMed  Google Scholar 

  45. Soejima, A. et al. Mitochondrial DNA is required for regulation of glucose-stimulated insulin secretion in a mouse pancreatic beta cell line, MIN6. J. Biol. Chem. 271, 26194–26199 (1996).

    CAS  PubMed  Google Scholar 

  46. Kennedy, E. D., Maechler, P. & Wollheim, C. B. Effects of depletion of mitochondrial DNA in metabolism secretion coupling in INS-1 cells. Diabetes 47, 374–380 (1998).

    CAS  PubMed  Google Scholar 

  47. Tsuruzoe, K. et al. Creation and characterization of a mitochondrial DNA-depleted pancreatic beta-cell line: impaired insulin secretion induced by glucose, leucine, and sulfonylureas. Diabetes 47, 621–631 (1998).

    CAS  PubMed  Google Scholar 

  48. Hayakawa, T. et al. Ethidium bromide-induced inhibition of mitochondrial gene transcription suppresses glucose-stimulated insulin release in the mouse pancreatic β-cell line βHC9. J. Biol. Chem. 273, 20300–20307 (1998).

    CAS  PubMed  Google Scholar 

  49. Silva, J. P. et al. Impaired insulin secretion and β-cell loss in tissue-specific knockout mice with mitochondrial diabetes. Nature Genet. 26, 336–340 (2000).

    CAS  PubMed  Google Scholar 

  50. Ballinger, S. W. et al. Maternally transmitted diabetes and deafness associated with a 10.4 kb mitochondrial DNA deletion. Nature Genet. 1, 11–15 (1992).

    CAS  PubMed  Google Scholar 

  51. van den Ouweland, J. M. et al. Mutation in mitochondrial tRNALeu(UUR) gene in a large pedigree with maternally transmitted type II diabetes mellitus and deafness. Nature Genet. 1, 368–371 (1992).

    CAS  PubMed  Google Scholar 

  52. Kadowaki, T. et al. A subtype of diabetes mellitus associated with a mutation of mitochondrial DNA. N. Engl. J. Med. 330, 962–968 (1994).

    CAS  PubMed  Google Scholar 

  53. Maassen, J. A., van Essen, E., van den Ouweland, J. M. & Lemkes, H. H. Molecular and clinical aspects of mitochondrial diabetes mellitus. Exp. Clin. Endocrinol. Diabetes 109, 127–134 (2001).

    CAS  PubMed  Google Scholar 

  54. Goto, Y., Nonaka, I. & Horai, S. A mutation in the tRNALeu(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 348, 651–653 (1990).

    ADS  CAS  PubMed  Google Scholar 

  55. Kobayashi, T. et al. In situ characterization of islets in diabetes with a mitochondrial DNA mutation at nucleotide position 3243. Diabetes 46, 1567–1571 (1997).

    CAS  PubMed  Google Scholar 

  56. Otabe, S. et al. Molecular and histological evaluation of pancreata from patients with a mitochondrial gene mutation associated with impaired insulin secretion. Biochem. Biophys. Res. Commun. 259, 149–156 (1999).

    CAS  PubMed  Google Scholar 

  57. Suzuki, Y. et al. Diabetes mellitus associated with the 3243 mitochondrial tRNA(Leu)(UUR) mutation: insulin secretion and sensitivity. Metabolism 46, 1019–1023 (1997).

    CAS  PubMed  Google Scholar 

  58. James, A. M., Wei, Y. H., Pang, C. Y. & Murphy, M. P. Altered mitochondrial function in fibroblasts containing MELAS or MERRF mitochondrial DNA mutations. Biochem. J. 318, 401–407 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. van den Ouweland, J. M., Maechler, P., Wollheim, C. B., Attardi, G. & Maassen, J. A. Functional and morphological abnormalities of mitochondria harbouring the tRNA(Leu)(UUR) mutation in mitochondrial DNA derived from patients with maternally inherited diabetes and deafness (MIDD) and progressive kidney disease. Diabetologia 42, 485–492 (1999).

    CAS  PubMed  Google Scholar 

  60. Brini, M. et al. A calcium signaling defect in the pathogenesis of a mitochondrial DNA inherited oxidative phosphorylation deficiency. Nature Med. 5, 951–954 (1999).

    CAS  PubMed  Google Scholar 

  61. Froguel, P. & Velho, G. Genetic determinants of type 2 diabetes. Recent Prog. Horm. Res. 56, 91–105 (2001).

    CAS  PubMed  Google Scholar 

  62. Polonsky, K. S., Sturis, J. & Bell, G. I. Non-insulin-dependent diabetes mellitus—a genetically programmed failure of the beta cell to compensate for insulin resistance. N. Engl. J. Med. 334, 777–783 (1996).

    CAS  PubMed  Google Scholar 

  63. Antonetti, D. A., Reynet, C. & Kahn, C. R. Increased expression of mitochondrial-encoded genes in skeletal muscle of humans with diabetes mellitus. J. Clin. Invest. 95, 1383–1388 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Lee, H. K. et al. Decreased mitochondrial DNA content in peripheral blood precedes the development of non-insulin-dependent diabetes mellitus. Diabetes Res. Clin. Pract. 42, 161–167 (1998).

    CAS  PubMed  Google Scholar 

  65. Michikawa, Y., Mazzucchelli, F., Bresolin, N., Scarlato, G. & Attardi G. Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science 286, 774–779 (1999).

    CAS  PubMed  Google Scholar 

  66. Tiedge, M., Lortz, S., Drinkgern, J. & Lenzen, S. Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes 46, 1733–1742 (1997).

    CAS  PubMed  Google Scholar 

  67. Maechler, P., Jornot, L. & Wollheim, C. B. Hydrogen peroxide alters mitochondrial activation and insulin secretion in pancreatic beta cells. J. Biol. Chem. 274, 27905–27913 (1999).

    CAS  PubMed  Google Scholar 

  68. Coordt, M. C., Ruhe, R. C. & McDonald, R. B. Aging and insulin secretion. Proc. Soc. Exp. Biol. Med. 209, 213–222 (1995).

    CAS  PubMed  Google Scholar 

  69. Hattersley, A. T. Maturity-onset diabetes of the young: clinical heterogeneity explained by genetic heterogeneity. Diabet. Med. 15, 15–24 (1998).

    CAS  PubMed  Google Scholar 

  70. Pontoglio, M. et al. Defective insulin secretion in hepatocyte nuclear factor 1α-deficient mice. J. Clin. Invest. 101, 2215–2222 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang, H., Maechler, P., Hagenfeldt, K. A. & Wollheim, C. B. Dominant-negative suppression of HNF-1α function results in defective insulin gene transcription and impaired metabolism-secretion coupling in a pancreatic β-cell line. EMBO J. 17, 6701–6713 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang, H., Antinozzi, P. A., Hagenfeldt, K. A., Maechler, P. & Wollheim, C. B. Molecular targets of a human HNF1α mutation responsible for pancreatic β-cell dysfunction. EMBO J. 19, 4257–4264 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Chan, C. B. et al. Increased uncoupling protein-2 levels in beta-cells are associated with impaired glucose-stimulated insulin secretion: mechanism of action. Diabetes 50, 1302–1310 (2001).

    CAS  PubMed  Google Scholar 

  74. Zhang, C. Y. et al. Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, beta cell dysfunction, and type 2 diabetes. Cell 105, 745–755 (2001).

    CAS  PubMed  Google Scholar 

  75. Wang, M. Y. et al. Adenovirus-mediated overexpression of uncoupling protein-2 in pancreatic islets of Zucker diabetic rats increases oxidative activity and improves beta-cell function. Diabetes 48, 1020–1025 (1999).

    CAS  PubMed  Google Scholar 

  76. Unger, R. H., Zhou, Y. T. & Orci, L. Regulation of fatty acid homeostasis in cells: novel role of leptin. Proc. Natl Acad. Sci. USA 96, 2327–2332 (1999).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. Roduit, R. et al. Glucose down-regulates the expression of the peroxisome proliferator-activated receptor-alpha gene in the pancreatic beta-cell. J. Biol. Chem. 275, 35799–35806 (2000).

    CAS  PubMed  Google Scholar 

  78. Lameloise, N., Muzzin, P., Prentki, M. & Assimacopoulos-Jeannet, F. Uncoupling protein 2: a possible link between fatty acid excess and impaired glucose-induced insulin secretion? Diabetes 50, 803–809 (2001).

    CAS  PubMed  Google Scholar 

  79. Li, L. X., Skorpen, F., Egeberg, K., Jorgensen, I. H. & Grill, V. Uncoupling protein-2 participates in cellular defense against oxidative stress in clonal beta-cells. Biochem. Biophys. Res. Commun. 282, 273–277 (2001).

    CAS  PubMed  Google Scholar 

  80. Garcia-Martinez, J. A., Cancelas, J., Villanueva-Penacarrillo, M. L., Valverde, I. & Malaisse, W. J. Prolongation of the insulinotropic action of glucagon-like peptide 1 by the dimethyl ester of succinic acid in an animal model of type-2 diabetes. Int. J. Mol. Med. 6, 319–321 (2000).

    CAS  PubMed  Google Scholar 

  81. Suzuki, S. et al. The effects of coenzyme Q10 treatment on maternally inherited diabetes mellitus and deafness, and mitochondrial DNA 3243 (A to G) mutation. Diabetologia 41, 584–588 (1998).

    CAS  PubMed  Google Scholar 

  82. Nakada, K. et al. Inter-mitochondrial complementation: mitochondria-specific system preventing mice from expression of disease phenotypes by mutant mtDNA. Nature Med. 7, 934–940 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to colleagues whose papers were not cited owing to space limitations. We are grateful to L. Orci for kindly providing the Fig. 4, to T. Pozzan and P. Antinozzi for most helpful discussions and to the Swiss National Science Foundation for continued support of our research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pierre Maechler or Claes B. Wollheim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maechler, P., Wollheim, C. Mitochondrial function in normal and diabetic β-cells. Nature 414, 807–812 (2001). https://doi.org/10.1038/414807a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/414807a

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing