Abstract
The aetiology of type 2, or non-insulin-dependent, diabetes mellitus has been characterized in only a limited number of cases. Among these, mitochondrial diabetes, a rare subform of the disease, is the consequence of pancreatic β-cell dysfunction caused by mutations in mitochondrial DNA, which is distinct from the nuclear genome. The impact of such mutations on β-cell function reflects the importance of mitochondria in the control of insulin secretion. The β-cell mitochondria serve as fuel sensors, generating factors that couple nutrient metabolism to the exocytosis of insulin-containing vesicles. The latter process requires an increase in cytosolic Ca2+, which depends on ATP synthesized by the mitochondria. This organelle also generates other factors, of which glutamate has been proposed as a potential intracellular messenger.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
£199.00 per year
only £3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Wallace, D. C. Mitochondrial diseases in man and mouse. Science 283, 1482–1488 (1999).
Rizzuto, R. et al. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280, 1763–1766 (1998).
Gray, M. W., Burger, G. & Lang, B. F. Mitochondrial evolution. Science 283, 1476–1481 (1999).
Neupert, W. Protein import into mitochondria. Annu. Rev. Biochem. 66, 863–917 (1997).
Larsson, N. G. et al. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nature Genet. 18, 231–236 (1998).
Beckman, K. B. & Ames, B. N. The free radical theory of aging matures. Physiol. Rev. 78, 547–581 (1998).
McCormack, J. G., Halestrap, A. P. & Denton, R. M. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol. Rev. 70, 391–425 (1990).
Duchen, M. R. Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell death. J. Physiol. 516, 1–17 (1999).
Newgard, C. B. & McGarry, J. D. Metabolic coupling factors in pancreatic beta-cell signal transduction. Annu. Rev. Biochem. 64, 689–719 (1995).
Matschinsky, F. M. A lesson in metabolic regulation inspired by the glucokinase glucose sensor paradigm. Diabetes 45, 223–241 (1996).
Ishihara, H., Wang, H., Drewes, L. R. & Wollheim, C. B. Overexpression of monocarboxylate transporter and lactate dehydrogenase alters insulin secretory responses to pyruvate and lactate in β cells. J. Clin. Invest. 104, 1621–1629 (1999).
Schuit, F. et al. Metabolic fate of glucose in purified islet cells. Glucose-regulated anaplerosis in beta cells. J. Biol. Chem. 272, 18572–18579 (1997).
Wollheim, C. B. Beta-cell mitochondria in the regulation of insulin secretion: a new culprit in Type II diabetes. Diabetologia 43, 265–277 (2000).
Ashcroft, F. M. et al. Stimulus-secretion coupling in pancreatic beta cells. J. Cell Biochem. 55, 54–65 (1994).
Rorsman, P. The pancreatic beta-cell as a fuel sensor: an electrophysiologist's viewpoint. Diabetologia 40, 487–495 (1997).
Lang, J. Molecular mechanisms and regulation of insulin exocytosis as a paradigm of endocrine secretion. Eur. J. Endocrinol. 259, 3–17 (1999).
Dunne, M. J. et al. Familial persistent hyperinsulinemic hypoglycemia of infancy and mutations in the sulfonylurea receptor. N. Engl. J. Med. 336, 703–706 (1997).
Grimberg, A. et al. Dysregulation of insulin secretion in children with congenital hyperinsulinism due to sulfonylurea receptor mutations. Diabetes 50, 322–328 (2001).
Henquin, J. C. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 49, 1751–1760 (2000).
Eliasson, L., Renstrom, E., Ding, W. G., Proks, P. & Rorsman, P. Rapid ATP-dependent priming of secretory granules precedes Ca2+-induced exocytosis in mouse pancreatic B-cells. J. Physiol. 503, 399–412 (1997).
Detimary, P., Van den Berghe, G. & Henquin, J. C. Concentration dependence and time course of the effects of glucose on adenine and guanine nucleotides in mouse pancreatic islets. J. Biol. Chem. 271, 20559–20565 (1996).
Wollheim, C. B., Ullrich, S., Meda, P. & Vallar, L. Regulation of exocytosis in electrically permeabilized insulin-secreting cells. Evidence for Ca2+ dependent and independent secretion. Biosci. Rept. 7, 443–454 (1987).
Vallar, L., Biden, T. J. & Wollheim, C. B. Guanine nucleotides induce Ca2+-independent insulin secretion from permeabilized RINm5F cells. J. Biol. Chem. 262, 5049–5056 (1987).
Proks, P., Eliasson, L., Ammala, C., Rorsman, P. & Ashcroft, F. M. Ca2+- and GTP-dependent exocytosis in mouse pancreatic beta-cells involves both common and distinct steps. J. Physiol. 496, 255–264 (1996).
Iezzi, M., Regazzi, R. & Wollheim, C. B. The Rab3-interacting molecule RIM is expressed in pancreatic beta-cells and is implicated in insulin exocytosis. FEBS Lett. 474, 66–70 (2000).
Schuit, F. C., Huypens, P., Heimberg, H. & Pipeleers, D. G. Glucose sensing in pancreatic beta-cells: a model for the study of other glucose-regulated cells in gut, pancreas, and hypothalamus. Diabetes 50, 1–11 (2001).
Huypens, P., Ling, Z., Pipeleers, D. & Schuit, F. Glucagon receptors on human islet cells contribute to glucose competence of insulin release. Diabetologia 43, 1012–1019 (2000).
Jones, P. M., Fyles, J. M. & Howell, S. L. Regulation of insulin secretion by cAMP in rat islets of Langerhans permeabilised by high-voltage discharge. FEBS Lett. 205, 205–209 (1986).
Ammala, C. et al. Activation of protein kinases and inhibition of protein phosphatases play a central role in the regulation of exocytosis in mouse pancreatic beta cells. Proc. Natl Acad. Sci. USA 91, 4343–4347 (1994).
Ozaki, N. et al. cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nature Cell Biol. 2, 805–811 (2000).
Pralong, W. F., Bartley, C. & Wollheim, C. B. Single islet beta-cell stimulation by nutrients: relationship between pyridine nucleotides, cytosolic Ca2+ and secretion. EMBO J. 9, 53–60 (1990).
Patterson, G. H., Knobel, S. M., Arkhammar, P., Thastrup, O. & Piston, D. W. Separation of the glucose-stimulated cytoplasmic and mitochondrial NAD(P)H responses in pancreatic islet beta cells. Proc. Natl Acad. Sci. USA 97, 5203–5207 (2000).
Prentki, M. et al. Malonyl-CoA and long chain acyl-CoA esters as metabolic coupling factors in nutrient-induced insulin secretion. J. Biol. Chem. 267, 5802–5810 (1992).
Deeney, J. T. et al. Acute stimulation with long chain acyl-CoA enhances exocytosis in insulin-secreting cells (HIT T-15 and NMRI beta-cells). J. Biol. Chem. 275, 9363–9368 (2000).
Antinozzi, P. A., Segall, L., Prentki, M., McGarry, J. D. & Newgard, C. B. Molecular or pharmacologic perturbation of the link between glucose and lipid metabolism is without effect on glucose-stimulated insulin secretion. A re-evaluation of the long-chain acyl-CoA hypothesis. J. Biol. Chem. 273, 16146–16154 (1998).
Maechler, P., Kennedy, E. D., Pozzan, T. & Wollheim, C. B. Mitochondrial activation directly triggers the exocytosis of insulin in permeabilized pancreatic β-cells. EMBO J. 16, 3833–3841 (1997).
Maechler, P., Kennedy, E. D., Wang, H. & Wollheim, C. B. Desensitization of mitochondrial Ca2+ and insulin secretion responses in the beta cell. J. Biol. Chem. 273, 20770–20778 (1998).
Maechler, P. & Wollheim, C. B. Glutamate acts as a mitochondrially derived messenger in glucose-induced insulin exocytosis. Nature 402, 685–689 (1999).
Nissim, I. Newer aspects of glutamine/glutamate metabolism: the role of acute pH changes. Am. J. Physiol. 277, F493–F497 (1999).
Sener, A. et al. Insulinotropic action of glutamic acid dimethyl ester. Am. J. Physiol. 267, E573–E584 (1994).
Rubi, B., Ishihara, H., Hegardt, F. G., Wollheim, C. B. & Maechler, P. GAD65-mediated glutamate decarboxylation reduces glucose-stimulated insulin secretion in pancreatic beta cells. J. Biol. Chem. 276, 36391–36396 (2001).
Maechler, P. & Wollheim, C. B. Mitochondrial signals in glucose-stimulated insulin secretion in the beta cell. J. Physiol. 529, 49–56 (2000).
Malaisse, W. J. et al. The stimulus–secretion coupling of glucose-induced insulin release. XXXV. The links between metabolic and cationic events. Diabetologia 16, 331–341 (1979).
King, M. P. & Attardi, G. Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science 246, 500–503 (1989).
Soejima, A. et al. Mitochondrial DNA is required for regulation of glucose-stimulated insulin secretion in a mouse pancreatic beta cell line, MIN6. J. Biol. Chem. 271, 26194–26199 (1996).
Kennedy, E. D., Maechler, P. & Wollheim, C. B. Effects of depletion of mitochondrial DNA in metabolism secretion coupling in INS-1 cells. Diabetes 47, 374–380 (1998).
Tsuruzoe, K. et al. Creation and characterization of a mitochondrial DNA-depleted pancreatic beta-cell line: impaired insulin secretion induced by glucose, leucine, and sulfonylureas. Diabetes 47, 621–631 (1998).
Hayakawa, T. et al. Ethidium bromide-induced inhibition of mitochondrial gene transcription suppresses glucose-stimulated insulin release in the mouse pancreatic β-cell line βHC9. J. Biol. Chem. 273, 20300–20307 (1998).
Silva, J. P. et al. Impaired insulin secretion and β-cell loss in tissue-specific knockout mice with mitochondrial diabetes. Nature Genet. 26, 336–340 (2000).
Ballinger, S. W. et al. Maternally transmitted diabetes and deafness associated with a 10.4 kb mitochondrial DNA deletion. Nature Genet. 1, 11–15 (1992).
van den Ouweland, J. M. et al. Mutation in mitochondrial tRNALeu(UUR) gene in a large pedigree with maternally transmitted type II diabetes mellitus and deafness. Nature Genet. 1, 368–371 (1992).
Kadowaki, T. et al. A subtype of diabetes mellitus associated with a mutation of mitochondrial DNA. N. Engl. J. Med. 330, 962–968 (1994).
Maassen, J. A., van Essen, E., van den Ouweland, J. M. & Lemkes, H. H. Molecular and clinical aspects of mitochondrial diabetes mellitus. Exp. Clin. Endocrinol. Diabetes 109, 127–134 (2001).
Goto, Y., Nonaka, I. & Horai, S. A mutation in the tRNALeu(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 348, 651–653 (1990).
Kobayashi, T. et al. In situ characterization of islets in diabetes with a mitochondrial DNA mutation at nucleotide position 3243. Diabetes 46, 1567–1571 (1997).
Otabe, S. et al. Molecular and histological evaluation of pancreata from patients with a mitochondrial gene mutation associated with impaired insulin secretion. Biochem. Biophys. Res. Commun. 259, 149–156 (1999).
Suzuki, Y. et al. Diabetes mellitus associated with the 3243 mitochondrial tRNA(Leu)(UUR) mutation: insulin secretion and sensitivity. Metabolism 46, 1019–1023 (1997).
James, A. M., Wei, Y. H., Pang, C. Y. & Murphy, M. P. Altered mitochondrial function in fibroblasts containing MELAS or MERRF mitochondrial DNA mutations. Biochem. J. 318, 401–407 (1996).
van den Ouweland, J. M., Maechler, P., Wollheim, C. B., Attardi, G. & Maassen, J. A. Functional and morphological abnormalities of mitochondria harbouring the tRNA(Leu)(UUR) mutation in mitochondrial DNA derived from patients with maternally inherited diabetes and deafness (MIDD) and progressive kidney disease. Diabetologia 42, 485–492 (1999).
Brini, M. et al. A calcium signaling defect in the pathogenesis of a mitochondrial DNA inherited oxidative phosphorylation deficiency. Nature Med. 5, 951–954 (1999).
Froguel, P. & Velho, G. Genetic determinants of type 2 diabetes. Recent Prog. Horm. Res. 56, 91–105 (2001).
Polonsky, K. S., Sturis, J. & Bell, G. I. Non-insulin-dependent diabetes mellitus—a genetically programmed failure of the beta cell to compensate for insulin resistance. N. Engl. J. Med. 334, 777–783 (1996).
Antonetti, D. A., Reynet, C. & Kahn, C. R. Increased expression of mitochondrial-encoded genes in skeletal muscle of humans with diabetes mellitus. J. Clin. Invest. 95, 1383–1388 (1995).
Lee, H. K. et al. Decreased mitochondrial DNA content in peripheral blood precedes the development of non-insulin-dependent diabetes mellitus. Diabetes Res. Clin. Pract. 42, 161–167 (1998).
Michikawa, Y., Mazzucchelli, F., Bresolin, N., Scarlato, G. & Attardi G. Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science 286, 774–779 (1999).
Tiedge, M., Lortz, S., Drinkgern, J. & Lenzen, S. Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes 46, 1733–1742 (1997).
Maechler, P., Jornot, L. & Wollheim, C. B. Hydrogen peroxide alters mitochondrial activation and insulin secretion in pancreatic beta cells. J. Biol. Chem. 274, 27905–27913 (1999).
Coordt, M. C., Ruhe, R. C. & McDonald, R. B. Aging and insulin secretion. Proc. Soc. Exp. Biol. Med. 209, 213–222 (1995).
Hattersley, A. T. Maturity-onset diabetes of the young: clinical heterogeneity explained by genetic heterogeneity. Diabet. Med. 15, 15–24 (1998).
Pontoglio, M. et al. Defective insulin secretion in hepatocyte nuclear factor 1α-deficient mice. J. Clin. Invest. 101, 2215–2222 (1998).
Wang, H., Maechler, P., Hagenfeldt, K. A. & Wollheim, C. B. Dominant-negative suppression of HNF-1α function results in defective insulin gene transcription and impaired metabolism-secretion coupling in a pancreatic β-cell line. EMBO J. 17, 6701–6713 (1998).
Wang, H., Antinozzi, P. A., Hagenfeldt, K. A., Maechler, P. & Wollheim, C. B. Molecular targets of a human HNF1α mutation responsible for pancreatic β-cell dysfunction. EMBO J. 19, 4257–4264 (2000).
Chan, C. B. et al. Increased uncoupling protein-2 levels in beta-cells are associated with impaired glucose-stimulated insulin secretion: mechanism of action. Diabetes 50, 1302–1310 (2001).
Zhang, C. Y. et al. Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, beta cell dysfunction, and type 2 diabetes. Cell 105, 745–755 (2001).
Wang, M. Y. et al. Adenovirus-mediated overexpression of uncoupling protein-2 in pancreatic islets of Zucker diabetic rats increases oxidative activity and improves beta-cell function. Diabetes 48, 1020–1025 (1999).
Unger, R. H., Zhou, Y. T. & Orci, L. Regulation of fatty acid homeostasis in cells: novel role of leptin. Proc. Natl Acad. Sci. USA 96, 2327–2332 (1999).
Roduit, R. et al. Glucose down-regulates the expression of the peroxisome proliferator-activated receptor-alpha gene in the pancreatic beta-cell. J. Biol. Chem. 275, 35799–35806 (2000).
Lameloise, N., Muzzin, P., Prentki, M. & Assimacopoulos-Jeannet, F. Uncoupling protein 2: a possible link between fatty acid excess and impaired glucose-induced insulin secretion? Diabetes 50, 803–809 (2001).
Li, L. X., Skorpen, F., Egeberg, K., Jorgensen, I. H. & Grill, V. Uncoupling protein-2 participates in cellular defense against oxidative stress in clonal beta-cells. Biochem. Biophys. Res. Commun. 282, 273–277 (2001).
Garcia-Martinez, J. A., Cancelas, J., Villanueva-Penacarrillo, M. L., Valverde, I. & Malaisse, W. J. Prolongation of the insulinotropic action of glucagon-like peptide 1 by the dimethyl ester of succinic acid in an animal model of type-2 diabetes. Int. J. Mol. Med. 6, 319–321 (2000).
Suzuki, S. et al. The effects of coenzyme Q10 treatment on maternally inherited diabetes mellitus and deafness, and mitochondrial DNA 3243 (A to G) mutation. Diabetologia 41, 584–588 (1998).
Nakada, K. et al. Inter-mitochondrial complementation: mitochondria-specific system preventing mice from expression of disease phenotypes by mutant mtDNA. Nature Med. 7, 934–940 (2001).
Acknowledgements
We apologize to colleagues whose papers were not cited owing to space limitations. We are grateful to L. Orci for kindly providing the Fig. 4, to T. Pozzan and P. Antinozzi for most helpful discussions and to the Swiss National Science Foundation for continued support of our research.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Maechler, P., Wollheim, C. Mitochondrial function in normal and diabetic β-cells. Nature 414, 807–812 (2001). https://doi.org/10.1038/414807a
Issue Date:
DOI: https://doi.org/10.1038/414807a