[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Amyloidogenic role of cytokine TGF-β1 in transgenic mice and in Alzheimer's disease

Abstract

Deposition of amyloid-β peptide in the central nervous system is a hallmark of Alzheimer's disease and a possible cause of neurodegeneration1,2,3. The factors that initiate or promote deposition of amyloid-β peptide are not known. The transforming growth factor TGF-β1 plays a central role in the response of the brain to injury4,5, and increased TGF-β1 has been found in the central nervous system of patients with Alzheimer's disease6,7,8. Here we report that TGF-β1 induces amyloid-β deposition in cerebral blood vessels and meninges of aged transgenic mice overexpressing this cytokine from astrocytes. Co-expression of TGF-β1 in transgenic mice overexpressing amyloid-precursor protein, which develop Alzheimer's like pathology9,10,11, accelerated the deposition of amyloid-β peptide. More TGF-β1 messenger RNA was present in post-mortem brain tissue of Alzheimer's patients than in controls, the levels correlating strongly with amyloid-β deposition in the damaged cerebral blood vessels of patients with cerebral amyloid angiopathy. These results indicate that overexpression of TGF-β1 may initiate or promote amyloidogenesis in Alzheimer's disease and in experimental models and so may be a risk factor for developing Alzheimer's disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TGF-β1 expression by perivascular astrocytes in TGF-β1 mice.
Figure 2: Thioflavin S-positive deposits in aged TGF-β1 mice and humans with Alzheimer's disease (AD).
Figure 3: Accelerated development of cerebrovascular amyloid deposition in hAPP/TGF-β1 bigenic mice.
Figure 4: Vascular TGF-β1 immunoreactivity in AD brains is associated with CAA.
Figure 5: TGF-β1 mRNA levels in frontal cortex of AD brains correlate with the degree of CAA.

Similar content being viewed by others

References

  1. Selkoe, D. J. Alzheimer's disease: A central role for amyloid. J. Neuropathol. Exp. Neurol. 53, 438–447 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Lendon, C. L., Ashall, F. & Goate, A. M. Exploring the etiology of Alzheimer disease using molecular genetics. J. Am. Med. Assoc. 277, 825–831 (1997).

    Article  CAS  Google Scholar 

  3. Hardy, J. Amyloid, the presenilins and Alzheimer's disease. Trends Neurosci. 20, 154–159 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Finch, C. E., Laping, N. J., Morgan, T. E., Nichols, N. R. & Pasinetti, G. M. TGF-β1 is an organizer of responses to neurodegeneration. J. Cell. Biochem. 53, 314–322 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. McCartney-Francis, N. L. & Wahl, S. M. Transforming growth factor β: A matter of life and death. J. Leuk. Biol. 55, 401–409 (1994).

    Article  CAS  Google Scholar 

  6. van der Wal, E. A., Gómez-Pinilla, F. & Cotman, C. W. Transforming growth factor-β1 is in plaques in Alzheimer and Down pathologies. NeuroReport 4, 69–72 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Chao, C. C. et al. Transforming growth factor β in Alzheimer's disease. Clin. Diag. Lab. Immunol. 1, 109–110 (1994).

    CAS  Google Scholar 

  8. Peress, N. S. & Perillo, E. Differential expression of TGF-β1, 2 and 3 isotypes in Alzheimer's disease: A comparative immunohistochemical study with cerebral infarction, aged human and mouse control brains. J. Neuropathol. Exp. Neurol. 54, 802–811 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Games, D. et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature 373, 523–527 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Masliah, E. et al. Comparison of neurodegenerative pathology in transgenic mice overexpressing V717F β-amyloid precursor protein and Alzheimer's disease. J. Neurosci. 16, 5795–5811 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Johnson-Wood, K. et al. Amyloid precursor protein processing and Aβ42deposition in a trangenic mouse model of Alzheimer disease. Proc. Natl Acad. Sci. USA 94, 1550–1555 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wyss-Coray, T. et al. Increased central nervous system production of extracellular matrix components and development of hydrocephalus in transgenic mice overexpressing transforming growth factor-β1. Am. J. Pathol. 147, 53–67 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Fillit, H. & Leveugle, B. Disorders of the extracellular matrix and the pathogenesis of senile dementia of the Alzheimer's type. Lab. Invest. 72, 249–253 (1995).

    CAS  PubMed  Google Scholar 

  14. Vinters, H. V. Cerebral amyloid angiopathy. A critical review. Stroke 18, 311–324 (1987).

    Article  CAS  PubMed  Google Scholar 

  15. Terry, R. D., Masliah, E. & Hansen, L. A. in Alzheimer's Disease (eds Terry, R. D., Katzman, R. & Bick, K. L.) 179–196 (Raven, New York, (1994)).

    Google Scholar 

  16. Rockenstein, E. M. et al. Levels and alternative splicing of amyloid β protein precursor (APP) transcripts in brains of transgenic mice and humans with Alzheimer's disease. J. Biol. Chem. 270, 28257–28267 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Hyman, B. T., Tanzi, R. E., Marzloff, K., Barbour, R. & Schenk, D. Kunitz protease inhibitor-containing amyloid β protein precursor immunoreactivity in Alzheimer's disease. J. Neuropathol. Exp. Neurol. 51, 76–83 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Haan, J., Maat-Schieman, M. L. C. & Roos, R. A. C. Clinical aspects of cerebral amyloid angiopathy. Dementia 5, 210–213 (1994).

    CAS  PubMed  Google Scholar 

  19. Itoh, Y., Yamada, M., Hayakawa, M., Otomo, E. & Miyatake, T. Cerebral amyloid angiopathy: A significant cause of cerebellar as well as lobar cerebral hemorrhage in the elderly. J. Neurol. Sci. 116, 135–141 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Strittmatter, W. J. & Roses, A. D. Apolipoprotein E and Alzheimer's disease. Annu. Rev. Nueorsci. 19, 53–77 (1996).

    Article  CAS  Google Scholar 

  21. McGeer, P. L. & McGeer, E. G. The inflammatory response system of brain: Implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res. Rev. 21, 195–218 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. McGeer, P. L., Schulzer, M. & McGeer, E. G. Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer's disease: A review of 17 epidemiologic studies. Neurology 47, 425–432 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Mayeux, R. et al. Genetic susceptibility and head injury as risk factors for Alzheimer's disease among community-dwelling elderly persons and their first-degree relatives. Ann. Neurol. 33, 494–501 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Nicoll, J. A. R., Roberts, G. W. & Graham, D. I. Apolipoprotein E ε4 allele is associated with deposition of amyloid β-protein following head injury. Nature Med. 1, 135–137 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Wisniewski, T. & Frangione, B. Apolipoprotein E: a pathological chaperone protein in patients with cerebral and systemic amyloid. Neurosci. Lett. 135, 235–238 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Schmechel, D. E. et al. Increased amyloid β-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc. Natl Acad. Sci. USA 90, 9649–9653 (1993).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Masliah, E. et al. Spectrum of human immunodeficienty virus-associated neocortical damage. Ann. Neurol. 32, 321–329 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Olichney, J. M. et al. The apolipoprotein E ε4 allele is associated with increased neuritic plaques and cerebral amyloid angiopathy in Alzheimer's disease and Lewy body variant. Neurology 47, 190–196 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Frautschy, S. A., Yang, F., Calderon, L. & Cole, G. M. Ront models of Alzheimer's disease: rat Aβ infusion approaches to amyloid deposits. Neurobiol. Aging 17, 311–321 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Hsiao, K. et al. Correlaltive memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science 274, 99–102 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank F. Compagno and I. Samuels for technical assistance, D. Games for advice on the detection of amyloid deposits in transgenic mice, D. Schenk for amyloid-β antibodies, J. Rogers for post-mortem human brain tissue, and S. Ordway and G. Howard for editorial assistance. This work was supported by grants from the NIH and the Alzheimer's Association. T.W.-C. was partially supported by a fellowship from the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Wyss-Coray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wyss-Coray, T., Masliah, E., Mallory, M. et al. Amyloidogenic role of cytokine TGF-β1 in transgenic mice and in Alzheimer's disease. Nature 389, 603–606 (1997). https://doi.org/10.1038/39321

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/39321

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing