[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A neuronal learning rule for sub-millisecond temporal coding

Abstract

A PARADOX that exists in auditory and electrosensory neural systems1,2 is that they encode behaviourally relevant signals in the range of a few microseconds with neurons that are at least one order of magnitude slower. The importance of temporal coding in neural information processing is not clear yet3–8. A central question is whether neuronal firing can be more precise than the time constants of the neuronal processes involved9. Here we address this problem using the auditory system of the barn owl as an example. We present a modelling study based on computer simulations of a neuron in the laminar nucleus. Three observations explain the paradox. First, spiking of an 'integrate-and-fire' neuron driven by excitatory postsynaptic potentials with a width at half-maximum height of 250 μs, has an accuracy of 25 μs if the presynaptic signals arrive coherently. Second, the necessary degree of coherence in the signal arrival times can be attained during ontogenetic development by virtue of an unsupervised hebbian learning rule. Learning selects connections with matching delays from a broad distribution of axons with random delays. Third, the learning rule also selects the correct delays from two independent groups of inputs, for example, from the left and right ear.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Carr, C. E. Annu. Rev. Neurosci. 16, 223–243 (1993).

    Article  CAS  Google Scholar 

  2. Heiligenberg, W. Neural Nets in Electric Fish (MIT Press, Cambridge, MA, 1991).

    Google Scholar 

  3. Hopfield, J. J. Nature 376, 33–36 (1995).

    Article  ADS  CAS  Google Scholar 

  4. Bialek, W., Rieke, F., de Ruyter van Steveninck, R. R. & Warland, D. Science 252, 1854–1857 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Abeles, M. in Models of Neural Networks II (eds Domany, E., van Hemmen, J. L. & Schulten, K.) 121–140 (Springer, New York, 1994).

    Book  Google Scholar 

  6. Shadlen, M. N. & Newsome, W. T. Curr. Opin. Neurobiol. 4, 569–579 (1994).

    Article  CAS  Google Scholar 

  7. Softky, W. R. Curr. Opin. Neurobiol. 5, 239–247 (1995).

    Article  CAS  Google Scholar 

  8. Mainen, Z. F. & Sejnowski, T. J. Science 268, 1503–1506 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Softky, W. & Koch, C. J. Neurosci. 13, 334–350 (1993).

    Article  CAS  Google Scholar 

  10. Jeffress, L. A. J. Comp. Physiol. Psychol. 41, 35–39 (1948).

    Article  CAS  Google Scholar 

  11. Moiseff, A. & Konishi, M. J. Comp. Physiol. A 144, 299–304 (1981).

    Article  Google Scholar 

  12. Knudsen, E. I., Blasdel, G. G. & Konishi, M. J. Comp. Physiol. 133, 1–11 (1979).

    Article  Google Scholar 

  13. Sullivan, W. E. & Konishi, M. J. Neurosci. 4, 1787–1799 (1984).

    Article  CAS  Google Scholar 

  14. Reyes, A. D., Rubel, E. W. & Spain, W. J. J. Neurosci. 14, 5352–5364 (1994).

    Article  CAS  Google Scholar 

  15. Reyes, A. D., Rubel, E. W. & Spain, W. J. J. Neurosci. 16, 993–1007 (1996).

    Article  CAS  Google Scholar 

  16. Manis, P. B. & Marx, S. O. J. Neurosci. 11, 2865–2880 (1991).

    Article  CAS  Google Scholar 

  17. Oertel, D. J. Neurosci. 3, 2043–2053 (1983).

    Article  CAS  Google Scholar 

  18. Carr, C. E. Advances in Hearing Research (eds Manley, G. A. et al.) 24–30 (World Scientific, Singapore, 1995).

    Google Scholar 

  19. Carr, C. E. & Konishi, M. J. Neurosci. 10, 3227–3246 (1990).

    Article  CAS  Google Scholar 

  20. Hebb, D. O. The Organization of Behavior (Wiley, New York, 1949).

    Google Scholar 

  21. Herz, A., Sulzer, B., Kühn, R. & van Hemmen, J. L. Biol. Cybernet. 60, 457–467 (1989).

    Article  CAS  Google Scholar 

  22. Bliss, T. V. P. & Collingridge, G. L. Nature 361, 31–39 (1993).

    Article  ADS  CAS  Google Scholar 

  23. Debanne, D., Gähwiler, B. H. & Thompson, S. M. Proc. Natl Acad. Sci. USA 91, 1148–1152 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Markram, H. & Sakmann, B. Soc. Neurosci. Abstr. 21, 2007 (1995).

    Google Scholar 

  25. Goldberg, J. M. & Brown, P. B. J. Neurophysiol. 32, 613–636 (1969).

    Article  CAS  Google Scholar 

  26. Yin, T. C. T. & Chan, J. C. K. J. Neurophysiol. 64, 465–488 (1990).

    Article  CAS  Google Scholar 

  27. Georgopoulos, A. P., Schwartz, A. B. & Kettner, R. E. Science 233, 1416–1419 (1986).

    Article  ADS  CAS  Google Scholar 

  28. Salinas, E. & Abbott, L. F. J. Comput. Neurosci. 1, 87–107 (1994).

    Article  Google Scholar 

  29. Braitenberg, V. Network 4, 11–17 (1993).

    Article  Google Scholar 

  30. Bernander, Ö., Douglas, R. J., Martin, K. A. C. & Koch, C. Proc. Natl Acad. Sci. USA 88, 11569–11571 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerstner, W., Kempter, R., van Hemmen, J. et al. A neuronal learning rule for sub-millisecond temporal coding. Nature 383, 76–78 (1996). https://doi.org/10.1038/383076a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/383076a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing