[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Biodiversity and stability in grasslands

Abstract

ONE of the ecological tenets justifying conservation of biodiversity is that diversity begets stability. Impacts of biodiversity on population dynamics and ecosystem functioning have long been debated1–7, however, with many theoretical explorations2–6,8–11 but few field studies12–15. Here we describe a long-term study of grasslands16,17 which shows that primary productivity in more diverse plant communities is more resistant to, and recovers more fully from, a major drought. The curvilinear relationship we observe suggests that each additional species lost from our grasslands had a progressively greater impact on drought resistance. Our results support the diversity–stability hypothesis5,6,18,19, but not the alternative hypothesis that most species are functionally redundant19–21. This study implies that the preservation of biodiversity is essential for the maintenance of stable productivity in ecosystems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Elton, C. S. The Ecology of Invasions by Animals and Plants (Chapman & Hall, London, 1958).

    Book  Google Scholar 

  2. MacAithur, R. H. Ecology 36, 533–536 (1955).

    Article  Google Scholar 

  3. May, R. M. Stability and Complexity in Model Ecosystems (Princeton University Press, 1973).

    Google Scholar 

  4. Goodman, D. Q. Rev. Biol. 50, 237–266 (1975).

    Article  Google Scholar 

  5. McNaughton, S. J. Am. Nat. 11, 515–525 (1977).

    Article  Google Scholar 

  6. Pimm, S. L. Nature 307, 321–326 (1984).

    Article  ADS  Google Scholar 

  7. Schulze, E. D. & Mooney, H. A. Biodiversity and Ecosystem Function (Springer, Berlin, 1993).

    Book  Google Scholar 

  8. Gardner, M. R. & Ashby, W. R. Nature 228, 784 (1970).

    Article  ADS  CAS  Google Scholar 

  9. Murdoch, W. W. J. appl. Ecol. 12, 795–807 (1975).

    Article  Google Scholar 

  10. Yodzis, P. Nature 284, 544–545 (1980).

    Article  ADS  Google Scholar 

  11. King, A. W. & Pimm, S. L. Am. Nat. 122, 229–239 (1983).

    Article  Google Scholar 

  12. McNaughton, S. J. Ecol. Monogr. 55, 259–294 (1985).

    Article  Google Scholar 

  13. Wolda, H. Am. Nat. 112, 1017–1045 (1978).

    Article  Google Scholar 

  14. Ewel, J. J., Mazzarino, M. J. & Berish, C. W. Ecol. Appl. 1, 289–302 (1991).

    Article  Google Scholar 

  15. Frank, D. A. & McNaughton, S. J. Oikos 62, 360–362 (1991).

    Article  Google Scholar 

  16. Tilman, D. Ecol. Monogr. 57, 189–214 (1987).

    Article  Google Scholar 

  17. Tilman, D. Plant Strategies and the Dynamics and Structure of Plant Communities (Princeton Univ. Press, 1988).

    Google Scholar 

  18. Ehrlich, P. R. & Ehrlich, A. H. Extinction. The Causes and Consequences of the Disappearance of Species (Random House, New York, 1981).

    MATH  Google Scholar 

  19. Lawton, J. H. & Brown, V. K. in Biodiversity and Ecosystem Function (eds Schulze, E. D. & Mooney, H. A.) 255–270 (Springer, Berlin, 1993).

    Google Scholar 

  20. Walker, B. H. Conserv. Biol. 6, 18–23 (1991).

    Article  Google Scholar 

  21. Vitousek, P. M. & Hopper, D. U. in Biodiversity and Ecosystem Function (eds Schulze, E. D. & Mooney, H. A.) 3–14 (Springer, Berlin, 1993).

    Google Scholar 

  22. Wilson, E. O. Biodiversity (National Academy Press, Washington DC, 1988).

    Google Scholar 

  23. Ehrlich, P. R. & Wilson, E. O. Science 253, 758–762 (1991).

    Article  ADS  CAS  Google Scholar 

  24. Tilman, D. & El Haddi, A. Oecologia 89, 257–264 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Vitousek, P. Am. Nat. 119, 553–572 (1982).

    Article  Google Scholar 

  26. Pastor, J., Aber, J. D., McClaugherty, C. A. & Melillo, J. M. Ecology 65, 256–268 (1984).

    Article  CAS  Google Scholar 

  27. Woodin, S. & Farmer, A. Biol. Conserv. 63, 23–30 (1993).

    Article  Google Scholar 

  28. Heil, G. W., Werger, J. A., DeMol, W., Vandam, D. & Heijne, B. Science 239, 764–765 (1988).

    Article  ADS  CAS  Google Scholar 

  29. Berendse, F., Aerts, R. & Bobbink, R. in Landscape Ecology of a Stressed Environment (eds Vos, C. C. & Opdam, P.) 104–121 (Chapman & Hall, London, 1993).

    Book  Google Scholar 

  30. Draper, N. R. & Smith, H. Applied Regression Analysis (Wiley, New York, 1981).

    MATH  Google Scholar 

  31. Snedecor, G. W. & Cochran, W. G. Statistical Methods (Iowa State University Press, Ames, 1980).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tilman, D., Downing, J. Biodiversity and stability in grasslands. Nature 367, 363–365 (1994). https://doi.org/10.1038/367363a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/367363a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing