[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Integrin-mediated short-term memory in Drosophila

Abstract

Volado is a new memory mutant of Drosophila. The locus encodes two isoforms of a new α-integrin, a molecule that dynamically mediates cell adhesion and signal transduction. The Volado gene is expressed preferentially in mushroom body cells, which are neurons known to mediate olfactory learning in insects. Volado proteins are concentrated in the mushroom body neuropil, brain areas that contain mushroom body processes in synaptic contact with other neurons. Volado mutants display impaired olfactory memories within 3 min of training, indicating that the integrin is required for short-term memory processes. Conditional expression of a Volado transgene during adulthood rescues the memory impairment. This rescue of memory is reversible, fading over time along with expression of the transgene. Thus the Volado integrin is essential for the physiological processes underlying memory. We propose a model in which integrins act as dynamic regulators of synapse structure or the signalling events underlying short-term memory formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Vol gene structure, transcripts and mutations.
Figure 2: Vol encodes two forms of an α-integrin.
Figure 3: Vol is preferentially expressed in mushroom bodies.
Figure 4: Memory deficits in Vol mutants.
Figure 5: Lack of neuroanatomical defects in Vol mutants.
Figure 6: Rescue of the Vol memory defect by conditional expression of Vol-s.

Similar content being viewed by others

References

  1. Byrne, J. H., Zwartjes, R., Homayouni, R., Critz, S. D. & Eskin, A. in Advances in Second Messenger and Phosphoprotein Research (eds Shenolikar, S. & Nairn, A. C.) 47–107 (Raven, New York, 1993).

    Google Scholar 

  2. Chetkovich, D. M., Gray, R., Johnston, D. & Sweatt, J. D. N-methyl-D-aspartate receptor activation increases cAMP levels and voltage-gated Ca2+ channel activity in area CA1 of hippocampus. Proc. Natl Acad. Sci. USA 88, 6467–6471 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Ghirardi, M.et al. Roles of PKA and PKC in facilitation of evoked and spontaneous transmitter release at depressed and nondepressed synapses in Aplysia sensor neurons. Neuron 9, 479–489 (1992).

    Article  CAS  Google Scholar 

  4. Davis, R. L. Physiology and biochemistry of Drosophila learning mutants. Physiol. Rev. 76, 299–317 (1996).

    Article  CAS  Google Scholar 

  5. Hawkins, R. D., Kandel, E. R. & Siegelbaum, S. A. Learning to modulate transmitter release: themes and variations in synaptic plasticity. Annu. Rev. Neurosci. 16, 625–665 (1993).

    Article  CAS  Google Scholar 

  6. Davis, H. P. & Squire, L. R. Protein synthesis and memory: a review. Psychol. Bull. 96, 518–559 (1984).

    Article  CAS  Google Scholar 

  7. Montarolo, P. G.et al. Acritical period for macromolecular synthesis in long-term heterosynaptic facilitation in Aplysia. Science 234, 1249–1254 (1986).

    Article  ADS  CAS  Google Scholar 

  8. Tully, T., Preat, T., Boynton, S. C. & Del Vecchio, M. Genetic dissection of consolidated memory in Drosophila. Cell 79, 35–47 (1994).

    Article  CAS  Google Scholar 

  9. Schacher, S., Castellucci, V. F. & Kandel, E. R. cAMP evokes long-term facilitation in Aplysia sensory neurons that requires new protein synthesis. Science 240, 1667–1669 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Bailey, C. H. & Kandel, E. R. Structural changes accompanying memory storage. Annu. Rev. Physiol. 55, 397–426 (1993).

    Article  CAS  Google Scholar 

  11. Davis, R. L. Mushroom bodies and Drosophila learning. Neuron. 11, 1–14 (1993).

    Article  CAS  Google Scholar 

  12. Davis, R. L. & Han, K.-A. Mushrooming mushroom bodies. Curr. Biol. 6, 146–148 (1996).

    Article  CAS  Google Scholar 

  13. Feany, M. S. & Quinn, W. G. Aneuropeptide gene defined by the Drosophila memory mutant amnesiac. Science 268, 869–873 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Yin, J. C. P.et al. Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell 79, 49–58 (1994).

    Article  CAS  Google Scholar 

  15. Grant, S. C. & Silva, A. J. Targeting learning. Trends Neurosci. 17, 71–75 (1994).

    Article  CAS  Google Scholar 

  16. Alberni, C. M., Ghirardi, M., Metz, R. & Kandel, E. R. C/EBP is an immediate-early gene required for the consolidation of long-term facilitation in Aplysia. Cell 76, 1099–1114 (1994).

    Article  Google Scholar 

  17. Mello, C. V. & Clayton, D. F. Differential induction of the ZENK gene in the avial forebrain and song control circuit after metrazole-induced depolarization. J. Neurobiol. 26, 145–161 (1995).

    Article  CAS  Google Scholar 

  18. Huston, J. P. & Hasenohrl, R. U. The role of neuropeptides in learning: focus on the neurokinin substance P. Behav. Brain Res. 66, 117–127 (1995).

    Article  CAS  Google Scholar 

  19. Zhuo, M., Hu, Y., Schultz, C., Kandel, E. R. & Hawkins, R. D. Role of guanylyl cyclase and cGMP-dependent protein kinase in long-term potentiation. Nature 368, 635–649 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Hynes, R. O. Integrins: Versatility, modulation, and signalling in cell adhesion. Cell 69, 11–25 (1992).

    Article  CAS  Google Scholar 

  21. Han, P.-L., Meller, V. & Davis, R. L. The Drosophila brain revisited by enhancer detection. J. Neurobiol. 31, 88–102 (1996).

    Article  CAS  Google Scholar 

  22. Skoulakis, E. M. C. & Davis, R. L. Olfactory learning deficits in mutants for leonardo, a Drosophila gene encoding a 14-3-3 protein. Neuron 17, 931–944 (1996).

    Article  CAS  Google Scholar 

  23. Kretsinger, R. H. Structure and evolution of calcium-modulated proteins. CRC Crit. Rev. Biochem. 8, 119–174 (1980).

    Article  CAS  Google Scholar 

  24. Barr, P. J. Mammalian subtilisins: the long-sought dibasic processing endoproteases. Cell 66, 1–3 (1991).

    Article  CAS  Google Scholar 

  25. Diamond, M. S. & Springer, T. A. The dynamic regulation of integrin adhesiveness. Curr. Biol. 4, 506–517 (1994).

    Article  CAS  Google Scholar 

  26. Dedhar, S. Novel functions for calreticulin: interaction with integrins and modulation of gene expression? Trends Biochem. Sci. 19, 269–307 (1994).

    Article  CAS  Google Scholar 

  27. Bausenwein, B., Muller, N. R. & Heisenberg, M. Behaviour-dependent activity labeling in the central complex of Drosophila during controlled visual stimulation. J. Comp. Neurol. 340, 255–268 (1994).

    Article  CAS  Google Scholar 

  28. Nighorn, A., Healy, M. J. & Davis, R. L. The cyclic AMP phosphodiesterase encoded by the Drosophila dunce gene is constructed in the mushroom body neuropil. Neuron 6, 455–467 (1991).

    Article  CAS  Google Scholar 

  29. Han, P.-L., Levin, L. R., Reed, R. R. & Davis, R. L. Preferential expression of the Drosophila rutabaga gene in mushroom bodies, neural centers for learning in insects. Neuron 9, 619–627 (1992).

    Article  CAS  Google Scholar 

  30. Skoulakis, E. M., Kalderon, D. & Davis, R. L. Preferential expression in mushroom bodies of the catalytic subunit of protein kinase A and its role in learning and memory. Neuron 11, 197–208 (1993).

    Article  CAS  Google Scholar 

  31. Han, K.-A., Millar, N., Grotewiel, M. S. & Davis, R. L. DAMB, a novel dopamine receptor expressed specifically in Drosophila mushroom bodies. Neuron 16, 1127–1135 (1996).

    Article  CAS  Google Scholar 

  32. Sastry, S. K. & Horwitz, A. F. Integrin cytoplasmic domains: mediators of cytoskeletal linkages and extra- and intracellular initiated transmembrane signalling. Curr. Opin. Cell Biol. 5, 819–831 (1993).

    Article  CAS  Google Scholar 

  33. Clark, E. A. & Brugge, J. S. Integrins and signal transduction pathways: The road taken. Science 268, 233–239 (1955).

    Article  ADS  Google Scholar 

  34. Zhang, Z., Vuori, K., Wang, H.-G., Reed, J. C. & Ruoslahti, E. Integrin activation by R-ras. Cell 61–69 (1996).

  35. Staubli, U., Vanderklish, P. & Lynch, G. Rapid Communication: An inhibitor of integrin receptors blocks long-term potentiation. Behav. Neur. Biol. 53, 1–5 (1990).

    Article  CAS  Google Scholar 

  36. Bahr, B. A.et al. Arg-gly-asp-ser-selective adhesion and the stabilization of long-term potentiation: pharmacological studies and the characterization of a candidate matrix receptor. J. Neurosci. 17, 1320–1329 (1997).

    Article  CAS  Google Scholar 

  37. Chen, B.-M. & Grinnel, A. D. Integrins and modulation of transmitter release from motor nerve terminals by stretch. Science 269, 1578–1580 (1995).

    Article  ADS  CAS  Google Scholar 

  38. Jones, L. S. Integrins: possible functions in the adult CNS. Trends Neurosci. 19, 68–72 (1996).

    Article  CAS  Google Scholar 

  39. Pirrotta, V. in Drosophila, A Practical Approach (ed. Roberts, D. B.) 83–110 (IRL Press, Oxford, 1986).

    Google Scholar 

  40. Zhang, S. D. & Odenwald, W. F. Misexpression of the white (w) gene triggers male-male courtship in Drosophila. Proc. Natl Acad. Sci. USA 92, 5525–5529 (1995).

    Article  ADS  CAS  Google Scholar 

  41. Hing, A. L. & Carlson, J. R. Male-male courtship behavior induced by ectopic expression of the Drosophila white gene: role of sensory function and age. J. Neurobiol. 30, 454–464 (1996).

    Article  CAS  Google Scholar 

  42. Lindman, H. R. Analysis of Variance in Experimental Design (Springer, New York, 1992).

    Book  Google Scholar 

Download references

Acknowledgements

We thank members of the R. L. Davis laboratory, R. Montague and D. Sweatt for comments on the manuscript; R. Latorre and P. Labarca for suggesting the name Volado; and E. Chen, S.Swanson, B. Schroeder and S. Ahmed for technical assistance. This work was supported by NRSAs (M.S.G., C.D.O.B.) and research grants from the NIH and the R.P. Doherty-Welch Chair in Science (R.L.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald L. Davis.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grotewiel, M., Beck, C., Wu, K. et al. Integrin-mediated short-term memory in Drosophila. Nature 391, 455–460 (1998). https://doi.org/10.1038/35079

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35079

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing