[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Distinct functions of the two isoforms of dopamine D2 receptors

Abstract

Signalling through dopamine D2 receptors governs physiological functions related to locomotion, hormone production and drug abuse1,2,3,4,5,6,7. D2 receptors are also known targets of antipsychotic drugs that are used to treat neuropsychiatric disorders such as schizophrenia8. By a mechanism of alternative splicing, the D2 receptor gene encodes two molecularly distinct isoforms9, D2S and D2L, previously thought to have the same function. Here we show that these receptors have distinct functions in vivo; D2L acts mainly at postsynaptic sites and D2S serves presynaptic autoreceptor functions. The cataleptic effects of the widely used antipsychotic haloperidol1 are absent in D2L-deficient mice. This suggests that D2L is targeted by haloperidol, with implications for treatment of neuropsychiatric disorders. The absence of D2L reveals that D2S inhibits D1 receptor-mediated functions, uncovering a circuit of signalling interference between dopamine receptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Disruption of D2L.
Figure 2: Responses to quinpirole, haloperidol and SCH23390 in D2L-/- mice.
Figure 3: Locomotor response to mixed and full dopaminergic agonists in D2L-/- and D2R-/- mice.

Similar content being viewed by others

References

  1. Jackson, D. J. & Westlind-Danielsson, A. Dopamine receptors: Molecular biology, biochemistry and behavioural aspects. Pharmacol. Ther. 64, 291–369 ( 1994).

    Article  CAS  Google Scholar 

  2. Baik, J. H. et al. Parkinsonian-like locomotor impairment in mice lacking dopamine D2 receptors. Nature 377, 424– 428 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Kelly, M. A. et al. Locomotor activity in D2 dopamine receptor-deficient mice is determined by gene dosage, genetic background, and developmental adaptations. J. Neurosci. 18, 3470– 3479 (1998).

    Article  CAS  Google Scholar 

  4. Jung, M. et al. Potentiation of the D2 mutant motor phenotype in mice lacking dopamine D2 and D3 receptors. Neuroscience 91, 911 –924 (1999).

    Article  CAS  Google Scholar 

  5. Maldonado, R. et al. Absence of opiate rewarding effects in mice lacking dopamine D2 receptors. Nature 388, 586– 589 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Saiardi, A., Bozzi, Y., Baik, J. H. & Borrelli, E. Antiproliferative role of dopamine: loss of D2 receptors causes hormonal dysfunction and pituitary hyperplasia. Neuron 19, 115– 126 (1997).

    Article  CAS  Google Scholar 

  7. Kelly, M. A. et al. Pituitary lactotroph hyperplasia and chronic hyperprolactinemia in dopamine D2 receptor-deficient mice. Neuron 19, 103–113 (1997).

    Article  CAS  Google Scholar 

  8. Egan, M. F. & Weinberger, D. R. Neurobiology of schizophrenia. Curr. Opin. Neurobiol. 7, 701– 707 (1997).

    Article  CAS  Google Scholar 

  9. Picetti, R. et al. Dopamine D2 receptors in signal transduction and behavior. Crit. Rev. Neurobiol. 11, 121– 142 (1997).

    Article  CAS  Google Scholar 

  10. Mercuri, N. B. et al. Loss of autoreceptor function in dopaminergic neurons from dopamine D2 receptor deficient mice. Neuroscience 79 , 323–327 (1997).

    Article  CAS  Google Scholar 

  11. Calabresi, P. et al. Abnormal synaptic plasticity in the striatum of mice lacking dopamine D2 receptors. J. Neurosci. 17, 4536–4544 (1997).

    Article  CAS  Google Scholar 

  12. L’Hirondel, M. et al. Lack of autoreceptor-mediated inhibitory control of dopamine release in striatal synaptosomes of D2 receptor-deficient mice. Brain Res. 792, 253–262 (1998).

    Article  Google Scholar 

  13. Montmayeur, J. P., Guiramand, J. & Borrelli, E. Preferential coupling between dopamine D2 receptors and G-proteins. Mol. Endocrinol. 7, 161– 170 (1993).

    CAS  PubMed  Google Scholar 

  14. Guiramand, J., Montmayeur, J. P., Ceraline, J., Bhatia, M. & Borrelli, E. Alternative splicing of the dopamine D2 receptor directs specificity of coupling to G-proteins. J. Biol. Chem. 270, 7354–7358 ( 1995).

    Article  CAS  Google Scholar 

  15. Crenshaw, E. B. III, Russo, A. F., Swanson, L. W. & Rosenfeld, M. G. Neuron specific alternative RNA processing in transgenic mice expressing a metallothionein-calcitonin fusion gene. Cell 49, 389–398 ( 1987).

    Article  CAS  Google Scholar 

  16. Eilam, D. & Szechtman, H. Biphasic effect of D2 agonist quinpirole on locomotion and movements. Eur. J. Pharmacol. 161, 151–157 (1989).

    Article  CAS  Google Scholar 

  17. Starke, K., Gothert, M. & Kilbinger, H. Modulation of neurotrasmitter release by presynaptic autoreceptors. Physiol. Rev. 69, 864– 989 (1989).

    Article  CAS  Google Scholar 

  18. Boulay, D. et al. Haloperidol-induced catalepsy is absent in dopamine D2, but maintained in dopamine D3 receptor knock-out mice. Eur. J. Pharmacol. 391, 63–73 ( 2000).

    Article  ADS  CAS  Google Scholar 

  19. Protais, P., Bonnet, J. & Constantin, J. Pharmacological characterization of the receptors involved in the apomorphine induced polyphasic modifications of locomotor activity in mice. Psychopharmacology 81, 126– 134 (1983).

    Article  CAS  Google Scholar 

  20. Ruskin D. N., Rawji, S. S. & Walters, J. R. Effects of full D1 dopamine receptor agonists on firing rates in the globus pallidus and substantia nigra pars compacta in vivo: tests for D1 receptor selectivity and comparisons to the partial agonist SKF 38393. J. Pharmacol. Exp. Ther. 286, 272–281 (1998).

    PubMed  Google Scholar 

  21. Nisenbaum, E. S., Mermelstein, P. G., Wilson, C. J. & Surmeier, D. J. Selective blockade of a slowly inactivating potassium current in striatal neurons by (±) 6-chloro-APB hydrobromide (SKF82958). Synapse 29, 213–224 ( 1998).

    Article  CAS  Google Scholar 

  22. Xu, F. et al. Mice lacking the norepinephrine transporter are supersensitive to psychostimulants. Nature Neurosci. 3, 465 –471 (2000).

    Article  CAS  Google Scholar 

  23. Boulay, D., Depoortere, R., Perrault, G., Borrelli, E. & Sanger, D. J. Dopamine D2 receptor knock-out mice are insensitive to the hypolocomotor and hypothermic effects of dopamine D2/D3 receptor agonists. Neuropharmacology 38, 1389–1396 (1999).

    Article  CAS  Google Scholar 

  24. Waddington, J. L., Daly, S. A. In D1:D2 dopamine receptor interactions (ed. Waddington, J.) 52–74 (Academic, London, 1993).

    Google Scholar 

  25. Rubinstein, M., Gershanik, O. & Stefano, F. J. E. Postsynaptic bimodal effect of sulpiride on locomotor activity induced by pergolide in cathecholamine-depleted mice. Naunyn-Schmiedeberg's Arch. Pharmacol. 337, 115– 117 (1988).

    Article  CAS  Google Scholar 

  26. Stoof, J. C. & Kebabian, J. W. Opposing roles for D-1 and D-2 dopamine receptors in efflux of cyclic AMP from rat neo-striatum. Nature 294, 366–368 ( 1981).

    Article  ADS  CAS  Google Scholar 

  27. Surmeier, D. J., Song, W. J. & Yan, Z. Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J. Neurosci. 16, 6579 –6591 (1996).

    Article  CAS  Google Scholar 

  28. Aizman, O. et al. Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons. Nature Neurosci. 3, 226–230 ( 2000).

    Article  CAS  Google Scholar 

  29. Kahn, Z. U. et al. Prominence of the dopamine D2 short isoform in dopaminergic pathways. Proc. Natl Acad. Sci. USA 95, 7731–7736 (1998).

    Article  ADS  Google Scholar 

  30. Rougé-Pont, F., Marinelli, M., LeMoal, M., Simon, H. & Piazza, P. V. Stress induced sensitization and glucocorticoids II: sensitization of the increase in extracellular dopamine induced by cocaine depends on stress-induced corticosterone secretion. J. Neurosci. 15, 7189–7195 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Saiardi for help in the initial phase of this work and D. Vallone, C. Mathis, M. Omori and J. Clifford for useful discussions. We are grateful to V. Heidt, Muriel Petit and Nelly Charrier for technical help. We thank A. Giovanni for the generous gift of SKF 81297. This work was supported by grants from INSERM, CNRS, HUS, MILDT and ARC (to E.B.), INSERM and Université de Bordeaux II (to P.V.P.) and from the Mariano Scippacercola Foundation and FRM fellowships to A.U.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emiliana Borrelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Usiello, A., Baik, JH., Rougé-Pont, F. et al. Distinct functions of the two isoforms of dopamine D2 receptors. Nature 408, 199–203 (2000). https://doi.org/10.1038/35041572

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35041572

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing