[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Representation of a perceptual decision in developing oculomotor commands

Abstract

Behaviour often depends on the ability to make categorical judgements about sensory information acquired over time. Such judgements require a comparison of the evidence favouring the alternatives1,2,3,4, but how the brain forms these comparisons is unknown. Here we show that in a visual discrimination task, the accumulating balance of sensory evidence favouring one interpretation over another is evident in the neural circuits that generate the behavioural response. We trained monkeys to make a direction judgement about dynamic random-dot motion5 and to indicate their judgement with an eye movement to a visual target. We interrupted motion viewing with electrical microstimulation of the frontal eye field and analysed the resulting, evoked eye movements for evidence of ongoing activity associated with the oculomotor response6,7,8,9,10. Evoked eye movements deviated in the direction of the monkey's judgement. The magnitude of the deviation depended on motion strength and viewing time. The oculomotor signals responsible for these deviations reflected the accumulated motion information that informed the monkey's choices on the discrimination task. Thus, for this task, decision formation and motor preparation appear to share a common level of neural organization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microstimulation paradigm.
Figure 2: Effect of target choice on eye movements evoked electrically during the discrimination task.
Figure 3: Effect of motion strength and viewing duration on eye movements evoked electrically during the discrimination task.
Figure 4: Behavioural performance as a function of motion strength and viewing duration.
Figure 5: Comparison of the deviation of evoked saccades and a decision variable.

Similar content being viewed by others

References

  1. Graham, N. V. S. Visual Pattern Analyzers (Oxford Univ. Press, Oxford, 1989).

    Book  Google Scholar 

  2. Carpenter, R. H. & Williams, M. L. Neural computation of log likelihood in control of saccadic eye movements. Nature 377, 59–62 ( 1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Leon, M. I. & Shadlen, M. N. Exploring the neurophysiology of decisions. Neuron 21, 669– 672 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Schall, J. D. & Thompson, K. G. Neural selection and control of visually guided eye movements. Annu. Rev. Neurosci. 22, 241–259 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Britten, K. H., Shadlen, M. N., Newsome, W. T. & Movshon, J. A. The analysis of visual motion: a comparison of neuronal and psychophysical performance. J. Neurosci. 12, 4745– 4765 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schlag-Rey, M., Schlag, J. & Shook, B. Interactions between natural and elecrically evoked saccades. I. Differences between sites carrying retinal error and motor error signals in monkey superior colliculus. Exp. Brain Res. 76, 537–547 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Kustov, A. A. & Robinson, D. L. Shared neural control of attentional shifts and eye movements. Nature 384, 74 –77 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Sparks, D. L. & Mays, L. E. Spatial localization of saccade targets. I. Compensation for stimulation-induced perturbations in eye position. J. Neurophysiol. 49, 45– 63 (1983).

    Article  CAS  PubMed  Google Scholar 

  9. Sparks, D. L., Mays, L. E. & Porter, J. D. Eye movements induced by pontine stimulation: interaction with visually triggered saccades. J. Neurophysiol. 58, 300–318 (1987).

    Article  CAS  PubMed  Google Scholar 

  10. Tehovnik, E. J., Slocum, W. M. & Schiller, P. H. Behavioural conditions affecting saccadic eye movements elicited electrically from the frontal lobes of primates. Eur. J. Neurosci. 11, 2431–2443 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Shadlen, M. N., Britten, K. H., Newsome, W. T. & Movshon, J. A. A computational analysis of the relationship between neuronal and behavioral responses to visual motion. J. Neurosci. 16, 1486–1510 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bruce, C. J. & Goldberg, M. E. Primate frontal eye fields. I. Single neurons discharging before saccades. J. Neurophysiol. 53, 603–635 ( 1985).

    Article  CAS  PubMed  Google Scholar 

  13. Wurtz, R. H. & Goldberg, M. E. Activity of superior colliculus in behaving monkey. III. Cells discharging before eye movements. J. Neurophysiol. 35, 575–586 (1972).

    Article  CAS  PubMed  Google Scholar 

  14. Mays, L. E. & Sparks, D. L. Dissociation of visual and saccade-related responses in superior colliculus neurons. J. Neurophysiol. 43, 207–232 (1980).

    Article  CAS  PubMed  Google Scholar 

  15. Schiller, P. H. & Sandell, J. H. Interactions between visually and electrically elicited saccades before and after superior colliculus and frontal eye field ablations in the rhesus monkey. Exp. Brain Res. 49, 381–392 (1983).

    Article  CAS  PubMed  Google Scholar 

  16. Lee, C., Rohrer, W. H. & Sparks, D. L. Population coding of saccadic eye movements by neurons in the superior colliculus. Nature 332, 357–360 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Sparks, D. L., Lee, C. & Rohrer, W. H. Population coding of the direction, amplitude, and velocity of saccadic eye movements by neurons in the superior colliculus. Cold Spring Harb. Symp. Quant. Biol. 55, 805– 811 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Geisler, W. S. & Albrecht, D. G. Visual cortex neurons in monkeys and cats: detection, discrimination, and identification. Vis. Neurosci. 14, 897– 919 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Shadlen, M. N. & Newsome, W. T. The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J. Neurosci. 18, 3870–3896 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Britten, K. H., Shadlen, M. N., Newsome, W. T. & Movshon, J. A. Responses of neurons in macaque MT to stochastic motion signals. Vis. Neurosci. 10, 1157–1169 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Robinson, D. A. Integrating with neurons. Annu. Rev. Neurosci. 12, 33–45 (1989).

    Article  CAS  PubMed  Google Scholar 

  22. Green, D. M. & Swets, J. A. Signal Detection Theory and Psychophysics (Wiley, New York, 1966).

    Google Scholar 

  23. Platt, M. L. & Glimcher, P. W. Neural correlates of decision variables in parietal cortex. Nature 400, 233–238 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Horwitz, G. D. & Newsome, W. T. Separate signals for target selection and movement specification in the superior colliculus. Science 284, 1158–1161 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Shadlen, M. N. & Newsome, W. T. Motion perception: seeing and deciding. Proc. Natl Acad. Sci. USA 93, 628–633 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim, J.-N. & Shadlen, M. N. Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque. Nature Neurosci. 2, 176–185 ( 1999).

    Article  PubMed  Google Scholar 

  27. Bruce, C. J., Goldberg, M. E., Bushnell, M. C. & Stanton, G. B. Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. J. Neurophysiol. 54, 714–734 (1985).

    Article  CAS  PubMed  Google Scholar 

  28. Robinson, D. A. A method of measuring eye movement using a scleral search coil in a magnetic field. IEEE Trans. Biomed. Eng. 10, 137– 145 (1963).

    CAS  PubMed  Google Scholar 

  29. Judge, S. J., Richmond, B. J. & Chu, F. C. Implantation of magnetic search coils for measurement of eye position: an improved method. Vision Res. 20 , 535–538 (1980).

    Article  CAS  PubMed  Google Scholar 

  30. Zohary, E., Shadlen, M. N. & Newsome, W. T. Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370, 140–143 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Mihali for animal training and technical support, and E. Freedman, G. Horwitz, B. Jagadeesh, T. Movshon and F. Rieke for helpful comments on the manuscript. This work was supported by the NEI, NCRR and the McKnight Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael N. Shadlen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gold, J., Shadlen, M. Representation of a perceptual decision in developing oculomotor commands . Nature 404, 390–394 (2000). https://doi.org/10.1038/35006062

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35006062

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing