[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Defects in pathfinding by cranial neural crest cells in mice lacking the neuregulin receptor ErbB4

Abstract

Mouse embryos with a loss-of-function mutation in the gene encoding the receptor tyrosine kinase ErbB4 exhibit misprojections of cranial sensory ganglion afferent axons. Here we analyse ErbB4-deficient mice, and find that morphological differences between wild-type and mutant cranial ganglia correlate with aberrant migration of a subpopulation of hindbrain-derived cranial neural crest cells within the paraxial mesenchyme environment. In transplantation experiments using new grafting techniques in cultured mouse embryos, we determine that this phenotype is non-cell-autonomous: wild-type and mutant neural crest cells both migrate in a pattern consistent with the host environment, deviating from their normal pathway only when transplanted into mutant embryos. ErbB4 signalling events within the hindbrain therefore provide patterning information to cranial paraxial mesenchyme that is essential for the proper migration of neural crest cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cranial ganglion abnormalities in ErbB4–/– embryos.
Figure 2: Neural crest cells and placode-derived cells contribute to the ErbB4–/– phenotype.
Figure 3: A subpopulation of r4-derived neural crest cells is misguided in ErbB4–/– embryos.
Figure 4: DiI labelling confirms that the migration of only r4-derived neural crest cells is affected in ErbB4–/– embryos.
Figure 5: Misguided r4-derived neural crest cells are a late-migrating subpopulation.
Figure 6: Environmental, not crest-intrinsic, cues control the misrouting of neural crest cells in ErbB4–/– embryos.

Similar content being viewed by others

References

  1. Lumsden, A. & Krumlauf, R. Patterning the vertebrate neuraxis. Science 274, 1109–1115 (1996).

    Article  CAS  Google Scholar 

  2. Noden, D. M. An analysis of migratory behavior of avian cephalic neural crest cells. Dev. Biol. 42, 106–130 (1975).

    Article  CAS  Google Scholar 

  3. Lumsden, A., Sprawson, N. & Graham, A. Segmental origin and migration of neural crest cells in the hindbrain region of the chick embryo. Development 113, 1281–1291 (1991).

    CAS  PubMed  Google Scholar 

  4. Sechrist, J., Serbedzija, G. N., Scherson, T., Fraser, S. E. & Bronner-Fraser, M. Segmental migration of the hindbrain neural crest does not arise from its segmental generation. Development 118, 691–703 (1993).

    CAS  PubMed  Google Scholar 

  5. Birgbauer, E., Sechrist, J., Bronner-Fraser, M. & Fraser, S. Rhombomeric origin and rostrocaudal reassortment of neural crest cells revealed by intravital microscopy. Development 121, 935–945 (1995).

    CAS  PubMed  Google Scholar 

  6. Keynes, R. J., Jaques, K. F. & Cook, G. M. Axon repulsion during peripheral nerve segmentation. Development Suppl 2, 131–139 (1991).

    CAS  Google Scholar 

  7. Farlie, P. G. et al. A paraxial exclusion zone creates patterned cranial neural crest cell outgrowth adjacent to rhombomeres 3 and 5. Dev. Biol. 213, 70–84 (1999).

    Article  CAS  Google Scholar 

  8. Helbling, P. M., Tran, C. T. & Brandli, A. W. Requirement for EphA receptor signaling in the segregation of Xenopus third and fourth arch neural crest cells. Mech. Dev. 78, 63–79 (1998).

    Article  CAS  Google Scholar 

  9. Smith, A., Robinson, V., Patel, K. & Wilkinson, D. G. The EphA4 and EphB1 receptor tyrosine kinases and ephrin-B2 ligand regulate targeted migration of branchial neural crest cells. Curr. Biol. 7, 561–570 (1997).

    Article  CAS  Google Scholar 

  10. Eickholt, B. J., Mackenzie, S. L., Graham, A., Walsh, F. S. & Doherty, P. Evidence for collapsin-1 functioning in the control of neural crest migration in both trunk and hindbrain regions. Development 126, 2181–2189 (1999).

    CAS  PubMed  Google Scholar 

  11. Holder, N. & Klein, R. Eph receptors and ephrins: effectors of morphogenesis. Development 126, 2033–2044 (1999).

    CAS  PubMed  Google Scholar 

  12. Ulupinar, E., Datwani, A., Behar, O., Fujisawa, H. & Erzurumlu, R. Role of semaphorin III in the developing rodent trigeminal system. Mol. Cell. Neurosci. 13, 281–292 (1999).

    Article  CAS  Google Scholar 

  13. Plowman, G. D. et al. Ligand-specific activation of HER4/p180erbB4, a fourth member of the epidermal growth factor receptor family. Proc. Natl Acad. Sci. USA 90, 1746–1750 (1993).

    Article  CAS  Google Scholar 

  14. Plowman, G. D. et al. Heregulin induces tyrosine phosphorylation of HER4/p180erbB4. Nature 366, 473–475 (1993).

    Article  CAS  Google Scholar 

  15. Riese, D. J. et al. The epidermal growth factor receptor couples transforming growth factor-alpha, heparin-binding epidermal growth factor-like factor, and amphiregulin to Neu, ErbB-3, and ErbB-4. J. Biol. Chem. 271, 20047–20052 (1996).

    Article  CAS  Google Scholar 

  16. Zhang, D. et al. Neuregulin-3 (NRG3): a novel neural tissue-enriched protein that binds and activates ErbB4. Proc. Natl Acad. Sci. USA 94, 9562–9567 (1997).

    Article  CAS  Google Scholar 

  17. Harari, D. et al. Neuregulin-4: a novel growth factor that acts through the ErbB-4 receptor tyrosine kinase. Oncogene 18, 2681–2689 (1999).

    Article  CAS  Google Scholar 

  18. Beerli, R. R. & Hynes, N. E. Epidermal growth factor-related peptides activate distinct subsets of ErbB receptors and differ in their biological activities. J. Biol. Chem. 271, 6071–6076 (1996).

    Article  CAS  Google Scholar 

  19. Paria, B. C., Elenius, K., Klagsbrun, M. & Dey, S. K. Heparin-binding EGF-like growth factor interacts with mouse blastocysts independently of ErbB1: a possible role for heparan sulfate proteoglycans and ErbB4 in blastocyst implantation. Development 126, 1997–2005 (1999).

    CAS  PubMed  Google Scholar 

  20. Gassmann, M. et al. Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature 378, 390–394 (1995).

    Article  CAS  Google Scholar 

  21. Golding, J. P., Tidcombe, H., Tsoni, S. & Gassmann, M. Chondroitin sulphate-binding molecules may pattern central projections of sensory axons within the cranial mesenchyme of the developing mouse. Dev. Biol. 216, 85–97 (1999).

    Article  CAS  Google Scholar 

  22. Dixon, M. & Lumsden, A. Distribution of neuregulin-1 (nrg1) and erbB4 transcripts in embryonic chick hindbrain. Mol. Cell. Neurosci. 13, 237–258 (1999).

    Article  CAS  Google Scholar 

  23. D’Amico-Martel, A. & Noden, D. Contributions of placodal and neural crest cells to avian cranial peripheral ganglia. Am. J. Anat. 166, 445–468 (1983).

    Article  Google Scholar 

  24. Lee, J. E. et al. Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix-loop-helix protein. Science 268, 836–844 (1995).

    Article  CAS  Google Scholar 

  25. Ma, Q., Chen, Z., del Barco Barrantes, I., de la Pompa, J. L. & Anderson, D. J. neurogenin1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron 20, 469–482 (1998).

    Article  CAS  Google Scholar 

  26. Fode, C. et al. The bHLH protein NEUROGENIN 2 is a determination factor for epibranchial placode-derived sensory neurons. Neuron 20, 483–494 (1998).

    Article  CAS  Google Scholar 

  27. Pattyn, A., Morin, X., Cremer, H., Goridis, C. & Brunet, J.-F. Expression and interactions of the two closely related homeobox genes Phox2a and Phox2b during neurogenesis. Development 124, 4065–4075 (1997).

    CAS  PubMed  Google Scholar 

  28. Meyer, D. et al. Isoform-specific expression and function of neuregulin. Development 124, 3575–3586 (1997).

    CAS  PubMed  Google Scholar 

  29. Ruberte, E., Friederich, V., Morriss-Kay, G. & Chambon, P. Differential distribution patterns of CRABP-I and CRABP-II transcripts during mouse embryogenesis. Development 115, 973–989 (1992).

    CAS  PubMed  Google Scholar 

  30. Kuhlbrodt, K., Herbarth, B., Sock, E., Hermans-Borgmeyer, I. & Wegner, M. Sox10, a novel transcriptional modulator in glial cells. J. Neurosci. 18, 237–250 (1998).

    Article  CAS  Google Scholar 

  31. Mitchell, P. J., Timmons, P. M., Hébert, J. M., Rigby, P. W. J. & Tjian, R. Transcription factor AP-2 is expressed in neural crest cell lineages during mouse embryogenesis. Genes Dev. 5, 105–119 (1991).

    Article  CAS  Google Scholar 

  32. Maconochie, M. et al. Cross-regulation in the mouse HoxB complex: the expression of Hoxb2 in rhombomere 4 is regulated by Hoxb1. Genes Dev. 11, 1885–1896 (1997).

    Article  CAS  Google Scholar 

  33. Manzanares, M. et al. The role of kreisler in segmentation during hindbrain development. Dev. Biol. 211, 220–237 (1999).

    Article  CAS  Google Scholar 

  34. Trainor, P. & Krumlauf, R. Plasticity in mouse neural crest cells reveals a new patterning role for cranial mesoderm. Nature Cell Biol. 2, 96–102 (2000).

    Article  CAS  Google Scholar 

  35. Meyer, D. & Birchmeier, C. Multiple essential functions of neuregulin in development. Nature 378, 386–390 (1995).

    Article  CAS  Google Scholar 

  36. Gassmann, M. & Lemke, G. Neuregulins and neuregulin receptors in neural development. Curr. Opin. Neurobiol. 7, 87–92 (1997).

    Article  CAS  Google Scholar 

  37. Alexandre, D. et al. Ectopic expression of Hoxa-1 in the zebrafish alters the fate of the mandibular arch neural crest and phenocopies a retinoic acid-induced phenotype. Development 122, 735–746 (1996).

    CAS  PubMed  Google Scholar 

  38. Bell, E., Wingate, R. J. & Lumsden, A. Homeotic transformation of rhombomere identity after localized Hoxb1 misexpression. Science 284, 2168–2171 (1999).

    Article  CAS  Google Scholar 

  39. Lee, Y. M. et al. Retinoic acid stage-dependently alters the migration pattern and identity of hindbrain neural crest cells. Development 121, 825–837 (1995).

    CAS  PubMed  Google Scholar 

  40. Gale, E. et al. Late effects of retinoic acid on neural crest and aspects of rhombomere. Development 122, 783–793 (1996).

    CAS  PubMed  Google Scholar 

  41. Wang, H. U. & Anderson, D. J. Eph family transmembrane ligands can mediate repulsive guidance of trunk neural crest migration and motor axon outgrowth. Neuron 18, 383–396 (1997).

    Article  CAS  Google Scholar 

  42. Shepherd, I., Luo, Y., Raper, J. A. & Chang, S. The distribution of collapsin-1 mRNA in the developing chick nervous system. Dev. Biol. 173, 185–199 (1996).

    Article  CAS  Google Scholar 

  43. Tessier-Lavigne, M. & Goodman, C. S. The molecular biology of axon guidance. Science 274, 1123–1133 (1996).

    Article  CAS  Google Scholar 

  44. O’Leary, D. D. & Wilkinson, D. G. Eph receptors and ephrins in neural development. Curr. Opin. Neurobiol. 9, 65–73 (1999).

    Article  Google Scholar 

  45. Sechrist, J., Scherson, T. & Bronner-Fraser, M. Rhombomere rotation reveals that multiple mechanisms contribute to segmental pattern of hindbrain neural crest migration. Development 120, 1777–1790 (1994).

    CAS  PubMed  Google Scholar 

  46. Trainor, P. A., Tan, S. S. & Tam, P. P. L. Cranial paraxial mesoderm-regionalization of cell fate and impact on craniofacial development in mouse embryos. Development 120, 2925–2932 (1994).

    Google Scholar 

  47. Sturm, K. & Tam, P. P. L. Isolation and culture of whole postimplantation embryos and germ layer derivatives. Methods Enzymol. 225, 164–190 (1993).

    Article  CAS  Google Scholar 

  48. Wilkinson, D. G. & Nieto, M. A. Detection of messenger RNA by in situ hybridization to tissue sections and whole mounts. Methods Enzymol. 225, 361–373 (1993).

    Article  CAS  Google Scholar 

  49. Trainor, P. A. & Tam, P. P. L. Cranial paraxial mesoderm and neural crest of the mouse embryo-codistribution in the craniofacial mesenchyme but distinct segregation in the branchial arches. Development 121, 2569–2582 (1995).

    CAS  PubMed  Google Scholar 

  50. Quinlan, G. A., Trainor, P. A. & Tam, P. P. Cell grafting and labeling in postimplantation mouse embryos. Methods Mol. Biol. 97, 41–59 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Tsoni for technical assistance; M. Dixon and B. Fritzsch for critically reviewing the manuscript; H. Tidcombe for valuable discussions; D.J. Anderson and Q. Ma for the gift of NeuroD, Neurogenin-1 and Neurogenin-2 plasmids; C. Goridis for the Phox2b plasmid; and M. Wegner for the Sox10 plasmid. P.T. was supported by EMBO and HFSP postdoctoral fellowships. This work was funded by Core MRC Programme support and an EEC Biotechnology Network grant (BIO4 CT-960378) to R.K.

Correspondence and requests for materials should be addressed to M.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Gassmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golding, J., Trainor, P., Krumlauf, R. et al. Defects in pathfinding by cranial neural crest cells in mice lacking the neuregulin receptor ErbB4. Nat Cell Biol 2, 103–109 (2000). https://doi.org/10.1038/35000058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35000058

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing