[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Inhibition by chloroquine of a novel haem polymerase enzyme activity in malaria trophozoites

Abstract

THE incidence of human malaria has increased during the past 20 years; 270 million people are now estimated to be infected with the parasite1. An important contribution to this increase has been the appearance of malaria organisms resistant to quinoline-containing antimalarials such as chloroquine and quinine2. These drugs accumulate in the acid food vacuoles of the intraerythrocytic-stage malaria parasite3–5, although the mechanism of their specific toxicity in this organelle is uncertain. The primary function of the food vacuole is the proteolysis of ingested red cell haemoglobin6,7 to provide the growing parasite with essential amino acids. Haemoglobin breakdown in the food vacuole releases haem, which if soluble can damage biological membranes8 and inhibit a variety of enzymes9,10. Rather than degrading or excreting the haem, the parasite has evolved a novel pathway for its detoxification by incorporating it into an insoluble crystalline material called haemozoin or malaria pigment11. These crystals form in the food vacuole of the parasite concomitant with haemoglobin degradation, where they remain until the infected red cell bursts. The structure of haemozoin comprises a polymer of haems linked between the central ferric ion of one haem and a carboxylate side-group oxygen of another12. This tructure does not form spontaneously from either free haem or haemoglobin under physiological conditions12–14, and the biochemistry of its formation is unclear. Here we report the identification and characterization of a haem polymerase enzyme activity from extracts of Plasmodium fal-ciparum trophozoites, and show that this enzyme is inhibited by quinoline-containing drugs such as chloroquine and quinine. This provides a possible explanation for the highly stage-specific anti-malarial properties of these drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. WHO Technical Report Series 805 Practical Chemotherapy of Malaria (WHO, Geneva, 1990).

  2. Peters, W. Chemotherapy and Drug Resistance in Malaria (Academic, London, 1987).

    Google Scholar 

  3. Yayon, A., Cabatchik, Z. & Ginsburg, H. EMBO J. 3, 2695–2700 (1984).

    Article  CAS  Google Scholar 

  4. Krogstad, D. J., Schlesinger, P. H. & Gluzman, I. Y. J. Cell Biol. 101, 2302–2309 (1985).

    Article  CAS  Google Scholar 

  5. Krogstad, D. J. & Schlesinger, P. H. New Engl. J. Med. 317, 542–549 (1987).

    Article  CAS  Google Scholar 

  6. Yayon, A., Timberg, R., Friedman, S. & Ginsburg, H. J. Protozool. 31, 367–370 (1984).

    Article  CAS  Google Scholar 

  7. Goldberg, D. E., Slater, A. F. G., Cerami, A. & Henderson, G. B. Proc. natn. Acad. Sci. U.S.A. 87, 2931–2935 (1990).

    Article  ADS  CAS  Google Scholar 

  8. Tappel, A. L. Archs Biochem. Biophys. 44, 378–395 (1953).

    Article  CAS  Google Scholar 

  9. Vander Jagt, D. L., Hunsaker, L. A. & Campos, N. M. Molec. Biochem. Parasitol. 18, 389–400 (1986).

    Article  CAS  Google Scholar 

  10. Yasuhara, T., Mori, M., Walamatsu, K. & Kubo, K. Biochem. biophys. Res. Commun. 178, 95–103 (1991).

    Article  CAS  Google Scholar 

  11. Scheibel, L. W. & Sherman, I. W. in Malaria: Principles and Practice of Malariology (eds Wernsdorfer, W. H. & McGregor, I.) 219–252 (Churchill-Livingstone, Edinburgh, 1988).

    Google Scholar 

  12. Slater, A. F. G. et al. Proc. natn. Acad. Sci. U.S.A. 88, 325–329 (1991).

    Article  ADS  CAS  Google Scholar 

  13. Lemberg, R. & Legge, J. W. Hematin Compounds and Bile Pigments (Interscience, New York, 1949).

    Google Scholar 

  14. Fitch, C. D. & Kanjananggulpan, P. J. biol. Chem. 262, 15552–15555 (1987).

    CAS  PubMed  Google Scholar 

  15. Yamada, K. A. & Sherman, I. W. Expl Parasitol. 48, 61–74 (1979).

    Article  CAS  Google Scholar 

  16. Ashong, J. O., Blench, I. P. & Warhurst, D. C. Trans. R. Soc. trap. Med. Hyg. 83, 167–172 (1989).

    Article  CAS  Google Scholar 

  17. Homewood, C. A., Warhurst, D. C., Peters, W. & Baggaley, V. C. Nature 235, 50–52 (1972).

    Article  ADS  CAS  Google Scholar 

  18. Krogstad, D. J. & Schlesinger, P. H. Biochem. Pharmac. 35, 547–552 (1986).

    Article  CAS  Google Scholar 

  19. Ginsburg, H., Nissani, E. & Krugliak, M. Biochem. Pharmac. 38, 2645–2654 (1989).

    Article  CAS  Google Scholar 

  20. Fitch, C. D., Chevli, R., Phillips, G., Pfaller, M. A. & Krogstad, D. J. Antimicrob. Agents Chemother. 21, 819–822 (1982).

    Article  CAS  Google Scholar 

  21. Ginsburg, H. & Geary, T. G. Biochem. Pharmac. 36, 1567–1576 (1987).

    Article  CAS  Google Scholar 

  22. Zhang, Y., Asante, K. S. O. & Jung, A. J. Parasit. 72, 830–836 (1986).

    Article  CAS  Google Scholar 

  23. Warhurst, D. C. Ann. trop. Med. Parasitol. 81, 65–67 (1987).

    Article  CAS  Google Scholar 

  24. Warhurst, D. C. Biochem. Pharmac. 30, 3323–3327 (1981).

    Article  CAS  Google Scholar 

  25. White, N. J. et al. Lancet ii, 1069–1071 (1981).

    Article  Google Scholar 

  26. Vander Jagt, D. L., Hunsaker, L. A. & Campos, N. M. Biochem. Pharmac. 36, 3285–3291 (1987).

    Article  CAS  Google Scholar 

  27. Trager, W. & Jensen, J. B. Science 193, 673–675 (1976).

    Article  ADS  CAS  Google Scholar 

  28. Fuhrhop, J. H. & Smith, K. M. in Porphyrins and Metalloporphyhns (ed. Smith, K. M.) 757–889 (Elsevier, Amsterdam, 1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slater, A., Cerami, A. Inhibition by chloroquine of a novel haem polymerase enzyme activity in malaria trophozoites. Nature 355, 167–169 (1992). https://doi.org/10.1038/355167a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/355167a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing