Abstract
Insulin forms a complex with its receptors on the plasma membrane of cells and initiates a series of biochemical events which lead to the hormone's recognized effects1,2. The exact mechanism that initiates these events is unknown. We previously reported that insulin stimulates the phosphorylation of the 95,000 molecular weight (Mr) (β) subunit of its own receptor in intact cells and proposed that this phosphorylation reaction could be a very early step in insulin action3. To clarify the molecular basis of this reaction, we have now investigated the phosphorylation of insulin receptor in a cell-free system. Using [γ-32P]ATP in solubilized and partially purified receptor preparations from rat liver plasma membrane, we find that both the α and β subunits of the insulin receptor are phosphorylated. Furthermore, insulin stimulates the incorporation of 32P into both receptor subunits in a specific and dose-dependent manner. Phosphoamino acid determination of the β subunit after insulin stimulation reveals only phosphotyrosine. These findings suggest that the elements required for phosphorylation are associated with the plasma membrane of the cell and that specific phosphorylation of the insulin receptor on tyrosine residues can be activated in a solubilized preparation.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
£199.00 per year
only £3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Kahn, C. R. et al. Recent Prog. Horm. Res. 37, 477–538 (1981).
Czech, M. P. A. Rev. Biochem. 46, 359–384 (1977).
Kasuga, M., Karlsson, F. A. & Kahn, C. R. Science 215, 185–187 (1982).
Neville, D. M. Jr Biochim. biophys. Acta 154, 540–552 (1968).
Freychet, P., Roth, J. & Neville, D. M. Jr Proc. natn. Acad. Sci. U.S.A. 68, 1833–1837 (1971).
Cuatrecasas, P. Proc. natn. Acad. Sci. U.S.A. 69, 318–322 (1972).
Hedo, J., Harrison, L. C. & Roth, J. Biochemistry 20, 3385–3393 (1981).
Kasuga, M., Kahn, C. R., Hedo, J., Van Obberghen, E. & Yamada, K. M. Proc. natn. Acad. Sci. U.S.A. 78, 6917–6921 (1981).
Jacobs, S., Hazum, E., Schechter, Y. & Cuatrecasas, P. Proc. natn. Acad. Sci. U.S.A. 76, 4918–4921 (1979).
Pilch, P. F. & Czech, M. P. J. biol. Chem. 255, 1722–1731 (1980).
Kasuga, M., Hedo, J., Yamada, K. M. & Kahn, C. R. J. biol. Chem. (in the press).
Rechler, M. M., Podskalny, J. M. & Nissley, S. P. Nature 259, 134–136 (1976).
Kasuga, M., Van Obberghen, E., Nissley, S. P. & Rechler, P. J. biol. Chem. 256, 5305–5308 (1981).
Avruch, J., Leone, G. R. & Martin, D. B. J. biol. Chem. 251, 1511–1515 (1976).
Benjamin, G. J. & Clayton, N. C. J. biol. Chem. 253, 1700–1709 (1978).
Seals, J. R., McDonald, J. M. & Jarrett, L. J. biol. Chem. 254, 6991–6996 (1979).
Smith, C. J., Wejksnora, P. J., Warner, J. R., Rubin, S. & Rosen, O. M. Proc. natn. Acad. Sci. U.S.A. 76, 2725–2729 (1979).
Larner, J. et al. Science 206, 1407–1408 (1979).
Marchmont, R. J. & Houslay, M. D. Nature 286, 904–906 (1980).
Brownsey, R. W., Belsham, G. J. & Denton, R. M. FEBS Lett. 124, 145–150 (1981).
Hunter, T. & Sefton, B. M. Proc. natn. Acad. Sci. U.S.A. 77, 1311–1315 (1980).
Witte, O. N., Dasgupta, A. & Baltimore, D. Nature 283, 826–831 (1980).
Collet, M. S., Purchio, A. F. & Erikson, R. L. Nature 285, 167–169 (1980).
Feldman, R., Hanafusa, T. & Hanafusa, H. Cell 22, 757–765 (1980).
Kawai, S. et al. Proc. natn. Acad. Sci. U.S.A. 77, 6199–6203 (1980).
Ushiro, H. & Cohen, S. J. J. biol. Chem. 255, 8363–8365 (1980).
Hunter, T. & Cooper, J. A. Cell 24, 741–752 (1981).
Ek, B., Westermark, B., Wasteson, A. & Heldin, C-H. Nature 295, 419–420 (1982).
Reynolds, F. H. Jr, Todaro, G. J., Fryling, C. & Stephenson, J. R. Nature 292, 259–262 (1981).
Kasuga, M. et al. J. biol. Chem. (in the press).
Cohen, S., Carpenter, G. & King, L. Jr J. biol. Chem. 255, 4834–4842 (1980).
Laemmli, U. K. Nature 227, 680–685 (1970).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Kasuga, M., Zick, Y., Blithe, D. et al. Insulin stimulates tyrosine phosphorylation of the insulin receptor in a cell-free system. Nature 298, 667–669 (1982). https://doi.org/10.1038/298667a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/298667a0
This article is cited by
-
The dynamic clustering of insulin receptor underlies its signaling and is disrupted in insulin resistance
Nature Communications (2022)
-
Critical role of EphA3 in cancer and current state of EphA3 drug therapeutics
Molecular Biology Reports (2020)
-
Exploring receptor tyrosine kinases-inhibitors in Cancer treatments
Egyptian Journal of Medical Human Genetics (2019)
-
Biochemical and cellular properties of insulin receptor signalling
Nature Reviews Molecular Cell Biology (2018)
-
Insulin resistance, selfish brain, and selfish immune system: an evolutionarily positively selected program used in chronic inflammatory diseases
Arthritis Research & Therapy (2014)