[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A protein conjugation system essential for autophagy

Abstract

Autophagy is a process for the bulk degradation of proteins, in which cytoplasmic components of the cell are enclosed by double-membrane structures known as autophagosomes for delivery to lysosomes or vacuoles for degradation1,2,3,4. This process is crucial for survival during starvation and cell differentiation. No molecules have been identified that are involved in autophagy in higher eukaryotes. We have isolated 14 autophagy-defective (apg) mutants of the yeast Saccharomyces cerevisiae5 and examined the autophagic process at the molecular level6,7,8,9. We show here that a unique covalent-modification system is essential for autophagy to occur. The carboxy-terminal glycine residue of Apg12, a 186-amino-acid protein, is conjugated to a lysine at residue 149 of Apg5, a 294-amino-acid protein. Of the apg mutants, we found that apg7 and apg10 were unable to form an Apg5/Apg12 conjugate. By cloning APG7, we discovered that Apg7 is a ubiquitin-E1-like enzyme. This conjugation can be reconstituted in vitro and depends on ATP. To our knowledge, this is the first report of a protein unrelated to ubiquitin that uses a ubiquitination-like conjugation system. Furthermore, Apg5 and Apg12 have mammalian homologues, suggesting that this new modification system is conserved from yeast to mammalian cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cloning of APG12 and phenotype of apg12 disruptant.
Figure 3: The C-terminal Gly residue of Apg12 is essential for interaction with Apg5 and for autophagy.
Figure 2: Apg12 is conjugated to Apg5.
Figure 4: Apg5K149R is unable to generate Apg5/Apg12 conjugate and is defective in autophagy.
Figure 5: Apg7 is an E1-like protein and Apg12 is conjugated to Apg5 in an ATP-dependent manner.
Figure 6: Apg5/Apg12 conjugate co-fractionates with free Apg5 but not free Apg12.
Figure 7

Similar content being viewed by others

References

  1. Takeshige, K., Baba, M., Tsuboi, S., Noda, T. & Ohsumi, Y. Autophagy in yeast demonstrated with proteinase-deficient mutants and condtions for its induction. J. Cell Biol. 119, 301–311 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Baba, M., Takeshige, K., Baba, N. & Ohsumi, Y. Ultrastructural analysis of the autophagic process in yeast: Detection of autophagosomes and their characterization. J. Cell Biol. 124, 903–913 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Seglen, P. O. & Bohley, P. Autophagy and other vacuolar protein degradation mechanisms. Experientia 48, 158–172 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Dunn, W. A. J Autophagy and related mechanisms of lysome-mediated protein degradation. Trends Cell Biol. 4, 139–143 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Tsukada, M. & Ohsumi, Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 333, 169–174 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Kametaka, S., Matsuura, A., Wada, Y. & Ohsumi, Y. Structural and functional analyses of APG5, a gene involved in autophagy in yeast. Gene 178, 139–143 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Matsuura, A., Tsukada, M., Wada, Y. & Ohsumi, Y. Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene 192, 245–250 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Funakoshi, T., Matsuura, A., Noda, T. & Ohsumi, Y. Analyses of APG13 gene involved in autophagy in yeast, Saccharomyces cerevisiae. Gene 192, 207–213 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Kametaka, S., Okano, T., Ohsumi, M. & Ohsumi, Y. Apg14p and Apg6p/Vps30p form a protein complex essential for autophagy in the yeast Saccharomyces cerevisiae. J. Biol. Chem. (in the press).

  10. Noda, T., Matsuura, A., Wada, Y. & Ohsumi, Y. Novel system for monitoring autophagy in the yeast Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 210, 126–132 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Klionsky, D. J., Cueva, R. & Yaver, D. S. Aminopeptidase I of Saccharomyces cerevisiae is localized to the vacuole independent of the secretory pathway. J. Cell Biol. 119, 287–299 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Baba, M., Osumi, M., Scott, S. V., Klionsky, D. J. & Ohsumi, Y. Two distinct pathways for targeting proteins from the cytoplasm to the vacuole/lysome. J. Cell Biol. 139, 1687–1695 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Scott, S. V. et al. Cytoplasm-to-vacuole targeting and autophagy employ the same machinery to deliver proteins to the yeast vacuole. Proc. Natl Acad. Sci. USA 93, 12304–12308 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hochstrasser, M. Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 30, 405–429 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Varshavsky, A. The ubiquitin system. Trends Biochem. Sci. 22, 383–387 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Weissman, A. M. Regulating protein degradation by ubiquitination. Immunol. Today 18, 189–198 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. McGrath, J. P., Jentsch, S. & Varshavsky, A. UBA1: an essential yeast gene encoding ubiquitin-activating enzyme. EMBO J. 10, 227–236 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Matunis, M. J., Coutavas, E. & Blobel, G. Anovel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J. Cell Biol. 135, 1457–1470 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Mahajan, R., Delphin, C., Guan, T., Gerace, L. & Melchior, F. Asmall ubiquitin-related polypeptide involved in targeting RasGAP1 to nuclear pore complex protein RanBP2. Cell 88, 97–107 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Mahajan, R., Gerace, L. & Melchior, F. Molecular characterization of the SUMO-1 modification of RanGAP1 and its role in nuclear envelope association. J. Cell Biol. 140, 259–270 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Matunis, M. J., Wu, J. & Blobel, G. SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex. J. Cell Biol. 140, 499–509 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Johnson, E. S., Schwienhorst, I., Dohmen, R. J. & Blobel, G. The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J. 16, 5509–5519 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liakopoulos, D., Doenges, G., Matuschewski, K. & Jentsch, S. Anovel protein modification pathway related to the ubiquitin system. EMBO J. 17, 2208–2214 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lammer, D. et al. Modification of yeast Cdc53p by the ubiquitin-related protein Rub1p affects function of the SCFCdc4 complex. Genes Dev. 12, 914–926 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Osaka, F. et al. Anew Nedd8-ligating system for cullin-4A. Genes Dev. (in the press).

  26. Hammond, E. M. et al. Homology between a human apoptosis specific protein and the product of APG5, a gene involved in autophagy in yeast. FEBS Lett. 425, 391–395 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Noda, T. & Ohsumi, Y. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J. Biol. Chem. 273, 3963–3966 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Kamada, Y. et al. Activation of yeast protein kinase C by Rho1 GTPase. J. Biol. Chem. 271, 9193–9196 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Antebi, A. & Fink, G. R. The yeast Ca2+-ATPase homologue, PMR1, is required for normal Golgi function and localizes in a novel Golgi-like distribution. Mol. Biol. Cell 3, 633–654 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Y. Wada for the genomic library. N.M. is a research fellow of the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinori Ohsumi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mizushima, N., Noda, T., Yoshimori, T. et al. A protein conjugation system essential for autophagy. Nature 395, 395–398 (1998). https://doi.org/10.1038/26506

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/26506

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing