Abstract
Purpose. CTLA4Ig, a fusion protein of CTLA-4 and Fc of immunoglobulin (Ig) heavy chain, inhibits the essential costimulatory signal for full T cell activation via blocking the interaction between CD28 and B7 molecules and renders T cell nonresponsiveness. CTLA4Ig has been used to control deleterious T cell activation in many experimental systems. We hypothesized that by conjugating CTLA4Ig to liposomes the efficacy of CTLA4Ig could be enhanced through multivalent ligand effect, superior targetability, and modification of the fate of ligated costimulatory molecules.
Methods and Results. Consistent with this hypothesis, liposome-conjugated CTLA4Ig bound to B7 and blocked their binding sites more efficiently than free CTLA4Ig, lowering the half maximal dose for B7 blocking by an order of the magnitude. These results were similar both in B7-1 expressing p815 cells and in activated macrophages. Moreover, CTLA4Ig-liposomes underwent rapid internalization upon cell surface binding through B7 molecules. In allogenic mixed lymphocyte reaction assays, the CTLA4Ig-liposomes were tested to show effective inhibition of T cell proliferation. In vivo, however, when CTLA4Ig-liposomes were injected into mice, a significant fraction was localized to the reticuloendothelial system (RES), presumably because of its binding to Fc receptors expressed on tissue macrophages. The Fc receptor-mediated uptake could be alleviated by coinjection of anti-FcR monoclonal antibody. In the mouse engrafted with pancreatic islets of Langerhans underneath the capsule of one kidney, despite the increased localization in RES, enhanced accumulation of CTLA4Ig-conjugated liposome was observed in the engrafted kidney compared to the contralateral kidney.
Conclusion. We show that the conjugation of CTLA4Ig to liposome could increase the efficiency of the targeting by increasing the binding avidity at cellular level and by increasing the concentration at the target site in in vivo system. The biodistribution and circulation time data suggested that the CTLA4Ig-liposomes could be improved upon minimizing the FcR-mediated uptake by Fc receptor-bearing cells. Thus, the strategy of conjugating CTLA4Ig to liposomes could be exploited for immune intervention in transplantation and autoimmune diseases for the efficient blocking of costimulation.
Similar content being viewed by others
REFERENCES
D. J. Lenschow, T. L. Walunas, and J. A. Bluestone. CD28/B7 system of T cell costimulation. Annu. Rev. Immunol. 14:233-258 (1996).
P. S. Linsley, W. Brady, M. Urnes, L. S. Grosmaire, N. K. Damle, and J. A. Ledbetter. CTLA-4 is a second receptor for the B cell activation antigen B7. J. Exp. Med. 174:561-569 (1991).
A. V. Collins, D. W. Brodie, R. J. C. Gilbert, A. Iaboni, R. Manso-Sancho, B. Walse, and D. I. Stuart. P. A. v. d. Merwe, and S. J. Davis. The interaction properties of costimulatory molecules revisited. Immunity 17:201-210 (2002).
P. S. Linsley, P. M. Wallace, J. Johnson, M. G. Gibson, J. L. Greene, J. A. Ledbetter, C. Singh, and M. A. Tepper. Immunosuppression in vivo by a soluble form of the CTLA-4 T cell activation molecule. Science 257:792-795 (1992).
D. J. Lenschow, Y. Zeng, J. R. Thistlethwaite, A. Montag, W. Brady, M. G. Gibson, P. S. Linsley, and J. A. Bluestone. Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4lg. Science 257:789-792 (1992).
L. A. Turka, P. S. Linsley, H. Lin, W. Brady, J. M. Leiden, R. Q. Wei, M. L. Gibson, X. G. Zheng, S. Myrdal, D. Gordon, T. Bailey, S. F. Bolling, and C. B. Thompson. T-cell activation by the CD28 ligand B7 is required for cardiac allograft rejection in vivo. Proc. Natl. Acad. Sci. USA 89:11102-11105 (1992).
B. K. Finck, P. S. Linsley, and D. Wofsy. Treatment of murine lupus with CTLA4Ig. Science 265:1225-1227 (1994).
S. D. Miller, C. L. Vanderlugt, D. J. Lenschow, J. G. Pope, N. J. Karandikar, M. C. Dal Canto, and J. A. Bluestone. Blockade of CD28/B7-1 interaction prevents epitope spreading and clinical relapses of murine EAE. Immunity 3:739-745 (1995).
P. J. Perrin, D. Scott, L. Quigley, P. S. Albert, O. Feder, G. S. Gray, R. Abe, C. H. June, and M. K. Racke. Role of B7:CD28/CTLA-4 in the induction of chronic relapsing experimental allergic encephalomyelitis. J. Immunol. 154:1481-1490 (1995).
N. D. Griggs, S. S. Agersborg, R. J. Noelle, J. A. Ledbetter, P. S. Linsley, and K. S. Tung. The relative contribution of the CD28 and gp39 costimulatory pathways in the clonal expansion and pathogenic acquisition of self-reactive T cells. J. Exp. Med. 183:801-810 (1996).
N. Harris, C. Campbell, G. Le Gros, and F. Ronchese. Blockade of CD28/B7 co-stimulation by mCTLA4-H#x03931 inhibits antigen-induced lung eosinophilia but not Th2 cell development or recruitment in the lung. Eur. J. Immunol. 27:155-161 (1997).
J. R. Abrams, S. L. Kelley, E. Hayes, T. Kikuchi, M. J. Brown, S. Kang, M. G. Lebwohl, C. A. Guzzo, B. V. Jegasothy, P. S. Linsley, and J. G. Krueger. Blockade of T lymphocyte costimulation with cytotoxic T lymphocyte-associated antigen 4-immunoglobulin (CTLA4Ig) reverses the cellular pathology of psoriatic plaques, including the activation of keratinocytes, dendritic cells, and endothelial cells. J. Exp. Med. 192:681-694 (2000).
M. G. Levisetti, P. A. Padrid, G. L. Szot, N. Mittal, S. M. Meehan, C. L. Wardrip, G. S. Gray, D. S. Bruce, J. R. ThistlethwaiteJr., and J. A. Bluestone. Immunosuppressive effects of human CTLA4Ig in a non-human primate model of allogeneic pancreatic islet transplantation. J. Immunol. 159:5187-5191 (1997).
A. D. Kirk, D. M. Harlan, N. N. Armstrong, T. A. Davis, Y. Dong, G. S. Gray, X. Hong, D. Thomas, J. H. FechnerJr., and S. J. Knechtle. CTLA4-Ig and anti-CD40 ligand prevent renal allograft rejection in primates. Proc. Natl. Acad. Sci. USA 94:8789-8794 (1997).
N. R. Srinivas, R. S. Weiner, G. Warner, W. C. Shyu, T. Davidson, C. G. Fadrowski, L. K. Tay, J. S. Lee, D. S. Greene, and R. H. Barbhaiya. Pharmacokinetics and pharmacodynamics of CTLA4lg (BMS-188667), a novel immunosuppressive agent, in monkeys following multiple doses. J. Pharm. Sci. 85:1-4 (1996).
D. D. Lasic and D. Papahadjopoulos. Liposomes revisited. Science 267:1275-1276 (1995).
K.-D. Lee, Y. K. Oh, D. A. Portnoy, and J. A. Swanson. Delivery of macromolecules into cytosol using liposomes containing hemolysin from Listeria monocytogenes. J. Biol. Chem. 271:7249-7252 (1996).
C. Provoda and K.-D. Lee. Bacterial pore-forming hemolysins and their use in the cytosolic delivery of macromolecules. Adv. Drug Deliv. Rev. 41:209-221 (2000).
D. Papahadjopoulos, T. M. Allen, A. Gabizon, E. Mayhew, K. Matthay, S. K. Huang, K. D. Lee, M. C. Woodle, D. D. Lasic, C. Redemann, and F. J. Martin. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc. Natl. Acad. Sci. USA 88:11460-11464 (1991)
D. Kirpotin, J. W. Park, K. Hong, S. Zalipsky, W. L. Li, P. Carter, C. C. Benz, and D. Papahadjopoulos. Sterically stabilized anti-HER2 immunoliposomes: design and targeting to human breast cancer cells in vitro. Biochemistry 36:66-75 (1997).
C. B. Hansen, G. Y. Kao, E. H. Moase, S. Zalipsky, and T. M. Allen. Attachment of antibodies to sterically stabilized liposomes: evaluation, comparison and optimization of coupling procedures. Biochim. Biophys. Acta 1239:133-144 (1995).
T. M. Allen. Long-circulating (sterically stabilized) liposomes for targeted drug delivery. Trends Pharmacol. Sci. 15:215-220 (1994).
T. Ishida, D. L. Iden, and T. M. Allen. A combinatorial approach to producing sterically stabilized (Stealth) immunoliposomal drugs. FEBS Lett. 460:129-133 (1999).
J. W. Park, D. B. Kirpotin, K. Hong, R. Shalaby, Y. Shao, U. B. Nielsen, J. D. Marks, D. Papahadjopoulos, and C. C. Benz. Tumor targeting using anti-her2 immunoliposomes. J. Control. Release 74:95-113 (2001).
G. Girolomoni, G. Zambruno, R. Manfredini, V. Zacchi, S. Ferrari, A. Cossarizza, and A. Giannetti. Expression of B7 costimulatory molecule in cultured human epidermal Langerhans cells is #x00AEulated at the mRNA level. J. Invest. Dermatol. 103:54-59 (1994).
E. L. Racoosin and J. A. Swanson. Macrophage colony-stimulating factor (rM-CSF) stimulates pinocytosis in bone marrow-derived macrophages. J. Exp. Med. 170:1635-1648 (1989).
D. D. Spragg, D. R. Alford, R. Greferath, C. E. Larsen, K. D. Lee, G. C. Gurtner, M. I. Cybulsky, P. F. Tosi, C. Nicolau, and M. A. GimbroneJr. Immunotargeting of liposomes to activated vascular endothelial cells: a strategy for site-selective delivery in the cardiovascular system. Proc. Natl. Acad. Sci. USA 94:8795-8800 (1997).
D. L. Daleke, K. Hong, and D. Papahadjopoulos. Endocytosis of liposomes by macrophages: binding, acidification and leakage of liposomes monitored by a new fluorescence assay. Biochim. Biophys. Acta 1024:352-366 (1990).
R. M. Straubinger, D. Papahadjopoulos, and K. L. Hong. Endocytosis and intracellular fate of liposomes using pyranine as a probe. Biochemistry 29:4929-4939 (1990).
P. E. Lacy and M. Kostianovsky. Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes 16:35-39 (1967).
T. Allen and A. Chonn. Large unilamellar liposomes with low uptake into the reticuloendothelial system. FEBS Lett. 223:42-46 (1987).
T. Allen. Stealth liposomes: avoiding reticuloendothelial uptake. In Liposomes in the Therapy of Infectious Diseases and Cancer, Vol. 89, UCLA Symposium on Molecular and Cellular Biology, Alan R. Liss, Inc., New York, 1989 pp. 405-415.
K.-D. Lee, S. Nir, and D. Papahadjopoulos. Quantitative analysis of liposome-cell interactions in vitro: rate constants of binding and endocytosis with suspension and adherent J774 cells and human monocytes. Biochemistry 32:889-899 (1993).
K. Maruyama, N. Takahashi, T. Tagawa, K. Nagaike, and M. Iwatsuru. Immunoliposomes bearing polyethyleneglycol-coupled Fab’ fragment show prolonged circulation time and high extravasation into targeted solid tumors in vivo. FEBS Lett. 413:177-180 (1997).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Park, CG., Thiex, N.W., Lee, KM. et al. Targeting and Blocking B7 Costimulatory Molecules on Antigen-Presenting Cells Using CTLA4Ig-Conjugated Liposomes: In Vitro Characterization and in Vivo Factors Affecting Biodistribution. Pharm Res 20, 1239–1248 (2003). https://doi.org/10.1023/A:1025057216492
Issue Date:
DOI: https://doi.org/10.1023/A:1025057216492