[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Modeling Uncertain Sparse Data with Fuzzy B-splines

  • Published:
Reliable Computing

Abstract

Various interpolation and approximation techniques are employed in order to fit a B-spline surface to a set of sparse data for applications in geographical data analysis, image processing, solid modeling, etc.

The sparse data are usually endowed with some sort of uncertainty arising from several sources, e.g. measurement errors, data reduction, modelling errors, etc. An appropriate way of describing data uncertainty is through the concepts of interval/fuzzy arithmetic and applying these methods to the above problem leads to the definition of interval/fuzzy B-splines. An important related issue for applications is that of query or interrogation of the fuzzy B-spline which fits a sparse set of uncertain data points. Such a query may also be phrased in the form of solving fuzzy equations. In this article rigorous algorithms are presented for constructing fuzzy B-splines fitting uncertain sparse data and for their interrogation. An example is also presented related to the description of hazardous areas due to environmental pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anile, A. M., Deodato, S., and Privitera, G.: Implementing Fuzzy Arithmetic, Fuzzy Sets and Systems 72 (1995), p. 239.

    Article  Google Scholar 

  2. Anile, A. M., Falcidieno, B., Gallo, G., Spagnuolo, M., and Spinello, S.: Modeling Uncertain Data with Fuzzy B-spline, Fuzzy Sets and System 113 (2000), pp. 397–410.

    Article  MATH  MathSciNet  Google Scholar 

  3. Bertoluzza, C., Corral, N., and Salas, A.: On a New Class of Distances between Fuzzy Numbers, Mathware & Soft Computing 2 (1995), pp. 71–84.

    MATH  MathSciNet  Google Scholar 

  4. Cheng, T., Molenaar, M., and Bouloucos, T.: Identification of Fuzzy Objects from Field Observation Data, in: Hirtle, S. C. and Frank, A. U. (eds), Spatial Information Theory: A Theoretical Basis for GIS, Lecture Notes in Computer Science 1329, Springer-Verlag, Berlin, 1997, pp. 241–259.

    Google Scholar 

  5. Cross, V.: Fuzzy Objects for Geographical Information Systems, Fuzzy Sets and Systems 113 (2000), pp. 19–36.

    Article  MATH  Google Scholar 

  6. DeBoor, C.: On Calculating with B-splines, J. Approx. Theory 6 (1972), pp. 50–62.

    Article  MathSciNet  Google Scholar 

  7. Dubois, D., Kerr, E., Mesiar, R., and Prade, H.: Fuzzy Interval Analysis, in: Dubois, D. and Prade, H. (eds), Fundamentals of Fuzzy Sets, The Handbook of Fuzzy Sets, Kluwer Academic Publishers, 2001, pp. 483–581.

  8. Dubois, D. and Prade, H.: Fuzzy Sets and Statistical Data, European J. of Operational Research 25 (1984), pp. 345–356.

    Article  MathSciNet  Google Scholar 

  9. Dubois, D. and Prade, H.: Fuzzy Sets and Systems, Theory and Applications, Academic Press, Cambridge, 1980.

    Google Scholar 

  10. Dubois, D. and Prade, H.: On the Relevance of Non-Standard Theories of Uncertainty in Modeling and Pooling Expert Opinion, Reliability Engineering and System Safety 36 (1992), pp. 95–107.

    Article  Google Scholar 

  11. Ferson, S. and Kuhn, R.: Propagating Uncertainty in Ecological Risk Analysis Using Interval and Fuzzy Arithmetic, in: Zannetti, P. (ed.), Computer Techniques in Environmental Studies IV, Elsevier Applied Science, London, 1992, pp. 387–401.

    Google Scholar 

  12. Foody, G. M.: Fuzzy Modeling of Vegetation from Remotely Sensed Imagery, Ecological Modelling 85 (1996), pp. 3–12.

    Article  Google Scholar 

  13. Gallo, G., Perfilieva, I., Spagnuolo, M., and Spinello, S.: Geographical Data Analysis via Mountain Function, International Journal of Intelligent Systems 14 (1999), pp. 359–373.

    Article  MATH  Google Scholar 

  14. Hansen, E.: Global Optimization Using Interval Analysis, New York, 1992.

  15. Jones, D. R., Perttunen, C. D., and Stuckman, B. E.: Lipschitzian Optimization without Lischitz Constant, J. Optim. Theory Appl. 79 (1993), pp. 157–181.

    Article  MATH  MathSciNet  Google Scholar 

  16. Kauffman, A. and Gupta, M. M.: Introduction to Fuzzy Arithmetic: Theory and Applications, Van Nostrand Reihnold, New York, 1991.

    Google Scholar 

  17. Klawonn, F.: Fuzzy Sets and Vague Environment, Fuzzy Sets and Systems 66 (1994), pp. 207–221.

    Article  MATH  MathSciNet  Google Scholar 

  18. Lancaster, P. and Salkauskas, K.: Curve and Surface Fitting. An Introduction, Academic Press, London, 1986.

    Google Scholar 

  19. Lee, S., Wolberg, G., and Shin, S. Y.: Scattered Data Interpolation with Multilevel B-splines, IEEE Transactions on Visualization and Computer Graphics 3 (1997), pp. 228–244.

    Article  Google Scholar 

  20. Lodwick, W. A. and Santos, J.: Constructing Consistent Fuzzy Surface from Fuzzy Data, Fuzzy Sets and Systems 135(2) (2003), pp. 259–277.

    Article  MATH  MathSciNet  Google Scholar 

  21. Patrikalakis, N. M., Chryssostomidis, C., Tuohy, S. T., Bellingham, J. G., Leonard, J. J., Bales, J. W., Moran, B. A., and Yoon, J. W.: Virtual Environment for Ocean Exploration and Visualization, in: Proc. Computer Graphics Technology for Exploration of the Sea, CES'95, Rostock, 1995.

    Google Scholar 

  22. Silvert, W.: Fuzzy Indices of Environmental Conditions, Ecological Modeling 130(1–3) (2000), pp. 111–119.

    Article  Google Scholar 

  23. Zimmermann, H. J.: Fuzzy Set Theory and Its Applications, Kluwer-Nijhoff Publishing, Boston, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anile, A.M., Spinella, S. Modeling Uncertain Sparse Data with Fuzzy B-splines. Reliable Computing 10, 335–355 (2004). https://doi.org/10.1023/B:REOM.0000032117.04378.9a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:REOM.0000032117.04378.9a

Keywords

Navigation